Radial Positive Solutions for Semilinear Elliptic Problems with Linear Gradient Term in $$\mathbb {R}^N$$

Ruyun Ma, Xiaoxiao Su, Zhongzi Zhao
{"title":"Radial Positive Solutions for Semilinear Elliptic Problems with Linear Gradient Term in $$\\mathbb {R}^N$$","authors":"Ruyun Ma, Xiaoxiao Su, Zhongzi Zhao","doi":"10.1007/s12220-024-01787-3","DOIUrl":null,"url":null,"abstract":"<p>We are concerned with the linear problem </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\Delta u+\\frac{\\kappa }{|x|^2} x\\cdot \\nabla u =\\lambda K(|x|) u, &amp; x\\in \\mathbb {R}^N,\\\\ u(x)&gt;0, &amp; x\\in \\mathbb {R}^N,\\\\[2ex] u(x)\\rightarrow 0, &amp; |x|\\rightarrow \\infty , \\end{array} \\right. \\end{aligned}$$</span><p>where <span>\\(\\lambda \\)</span> is a positive parameter, <span>\\(\\kappa \\in [0,N-2)\\)</span>, <span>\\(N&gt; 2\\)</span> and <span>\\(K:\\mathbb {R}^N \\rightarrow (0,\\infty )\\)</span> is continuous and satisfies certain decay assumptions. We obtain the existence of the principal eigenvalue <span>\\(\\lambda _1^{\\text {rad}}\\)</span> and the corresponding positive eigenfunction <span>\\(\\varphi _1\\)</span> satisfies <span>\\(\\lim \\nolimits _{|x|\\rightarrow \\infty }\\varphi _1(|x|)=\\frac{c}{|x|^{N-2-\\kappa }}\\)</span> for some <span>\\(c&gt;0\\)</span>. As applications, we also study the existence of connected component of positive solutions for nonlinear infinite semipositone elliptic problems by bifurcation techniques.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01787-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are concerned with the linear problem

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+\frac{\kappa }{|x|^2} x\cdot \nabla u =\lambda K(|x|) u, & x\in \mathbb {R}^N,\\ u(x)>0, & x\in \mathbb {R}^N,\\[2ex] u(x)\rightarrow 0, & |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$

where \(\lambda \) is a positive parameter, \(\kappa \in [0,N-2)\), \(N> 2\) and \(K:\mathbb {R}^N \rightarrow (0,\infty )\) is continuous and satisfies certain decay assumptions. We obtain the existence of the principal eigenvalue \(\lambda _1^{\text {rad}}\) and the corresponding positive eigenfunction \(\varphi _1\) satisfies \(\lim \nolimits _{|x|\rightarrow \infty }\varphi _1(|x|)=\frac{c}{|x|^{N-2-\kappa }}\) for some \(c>0\). As applications, we also study the existence of connected component of positive solutions for nonlinear infinite semipositone elliptic problems by bifurcation techniques.

Abstract Image

$$\mathbb{R}^N$$中带有线性梯度项的半线性椭圆问题的径向正解
我们关注的是线性问题 $$\begin{aligned}-\Delta u+frac{kappa }{|x|^2} x\cdot \nabla u =\lambda K(|x|) u, &;x\in \mathbb {R}^N,\ u(x)>0, & x\in \mathbb {R}^N,\[2ex] u(x)\rightarrow 0, & |x|rightarrow \infty , \end{array}.\right.\end{aligned}$$其中\(\lambda \)是一个正参数,\(\kappa \in [0,N-2)\), \(N> 2\) 和\(K:\mathbb {R}^N \rightarrow (0,\infty )\) 是连续的,并且满足某些衰变假设。我们得到了主特征值\(\lambda _1^{text {rad}}\)的存在性以及相应的正特征函数\(\varphi _1\)满足\(\lim \nolimits _{|x|\rightarrow \infty }\varphi _1(|x|)=\frac{c}{|x|^{N-2-\kappa }}\) for some \(c>0\).作为应用,我们还利用分岔技术研究了非线性无限半正交椭圆问题正解的连接部分的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信