D. J. Strozzi, H. Sio, G. B. Zimmerman, J. D. Moody, C. R. Weber, B. Z. Djordjević, C. A. Walsh, B. A. Hammel, B. B. Pollock, A. Povilus, J. P. Chittenden, S. O'Neill
{"title":"Design and modeling of indirectly driven magnetized implosions on the NIF","authors":"D. J. Strozzi, H. Sio, G. B. Zimmerman, J. D. Moody, C. R. Weber, B. Z. Djordjević, C. A. Walsh, B. A. Hammel, B. B. Pollock, A. Povilus, J. P. Chittenden, S. O'Neill","doi":"10.1063/5.0214674","DOIUrl":null,"url":null,"abstract":"The use of magnetic fields to improve the performance of hohlraum-driven implosions on the National Ignition Facility (NIF) is discussed. The focus is on magnetically insulated inertial confinement fusion, where the primary field effect is to reduce electron-thermal and alpha-particle loss from the compressed hotspot (magnetic pressure is of secondary importance). We summarize the requirements to achieve this state. The design of recent NIF magnetized hohlraum experiments is presented. These are close to earlier shots in the three-shock, high-adiabat (BigFoot) campaign, subject to the constraints that magnetized NIF targets must be fielded at room-temperature, and use ≲1 MJ of laser energy to avoid the risk of optics damage from stimulated Brillouin scattering. We present results from the original magnetized hohlraum platform, as well as a later variant that gives a higher hotspot temperature. In both platforms, imposed fields (at the capsule center) of up to 28 T increase the fusion yield and hotspot temperature. Integrated radiation-magneto-hydrodynamic modeling with the Lasnex code of these shots is shown, where laser power multipliers and a saturation clamp on cross-beam energy transfer are developed to match the time of peak capsule emission and the P2 Legendre moment of the hotspot x-ray image. The resulting fusion yield and ion temperature agree decently with the measured relative effects of the field, although the absolute simulated yields are higher than the data by 2.0−2.7×. The tuned parameters and yield discrepancy are comparable for experiments with and without an imposed field, indicating the model adequately captures the field effects. Self-generated and imposed fields are added sequentially to simulations of one BigFoot NIF shot to understand how they alter target dynamics.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0214674","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of magnetic fields to improve the performance of hohlraum-driven implosions on the National Ignition Facility (NIF) is discussed. The focus is on magnetically insulated inertial confinement fusion, where the primary field effect is to reduce electron-thermal and alpha-particle loss from the compressed hotspot (magnetic pressure is of secondary importance). We summarize the requirements to achieve this state. The design of recent NIF magnetized hohlraum experiments is presented. These are close to earlier shots in the three-shock, high-adiabat (BigFoot) campaign, subject to the constraints that magnetized NIF targets must be fielded at room-temperature, and use ≲1 MJ of laser energy to avoid the risk of optics damage from stimulated Brillouin scattering. We present results from the original magnetized hohlraum platform, as well as a later variant that gives a higher hotspot temperature. In both platforms, imposed fields (at the capsule center) of up to 28 T increase the fusion yield and hotspot temperature. Integrated radiation-magneto-hydrodynamic modeling with the Lasnex code of these shots is shown, where laser power multipliers and a saturation clamp on cross-beam energy transfer are developed to match the time of peak capsule emission and the P2 Legendre moment of the hotspot x-ray image. The resulting fusion yield and ion temperature agree decently with the measured relative effects of the field, although the absolute simulated yields are higher than the data by 2.0−2.7×. The tuned parameters and yield discrepancy are comparable for experiments with and without an imposed field, indicating the model adequately captures the field effects. Self-generated and imposed fields are added sequentially to simulations of one BigFoot NIF shot to understand how they alter target dynamics.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas