Graph grammars and Physics Informed Neural Networks for simulating of pollution propagation on Spitzbergen

Maciej Sikora, Albert Oliver-Serra, Leszek Siwik, Natalia Leszczyńska, Tomasz Maciej Ciesielski, Eirik Valseth, Jacek Leszczyński, Anna Paszyńska, Maciej Paszyński
{"title":"Graph grammars and Physics Informed Neural Networks for simulating of pollution propagation on Spitzbergen","authors":"Maciej Sikora, Albert Oliver-Serra, Leszek Siwik, Natalia Leszczyńska, Tomasz Maciej Ciesielski, Eirik Valseth, Jacek Leszczyński, Anna Paszyńska, Maciej Paszyński","doi":"arxiv-2409.08799","DOIUrl":null,"url":null,"abstract":"In this paper, we present two computational methods for performing\nsimulations of pollution propagation described by advection-diffusion\nequations. The first method employs graph grammars to describe the generation\nprocess of the computational mesh used in simulations with the meshless solver\nof the three-dimensional finite element method. The graph transformation rules\nexpress the three-dimensional Rivara longest-edge refinement algorithm. This\nsolver is used for an exemplary application: performing three-dimensional\nsimulations of pollution generation by the coal-burning power plant and its\npropagation in the city of Longyearbyen, the capital of Spitsbergen. The second\ncomputational code is based on the Physics Informed Neural Networks method. It\nis used to calculate the dissipation of the pollution along the valley in which\nthe city of Longyearbyen is located. We discuss the instantiation and execution\nof the PINN method using Google Colab implementation. We discuss the benefits\nand limitations of the PINN implementation.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present two computational methods for performing simulations of pollution propagation described by advection-diffusion equations. The first method employs graph grammars to describe the generation process of the computational mesh used in simulations with the meshless solver of the three-dimensional finite element method. The graph transformation rules express the three-dimensional Rivara longest-edge refinement algorithm. This solver is used for an exemplary application: performing three-dimensional simulations of pollution generation by the coal-burning power plant and its propagation in the city of Longyearbyen, the capital of Spitsbergen. The second computational code is based on the Physics Informed Neural Networks method. It is used to calculate the dissipation of the pollution along the valley in which the city of Longyearbyen is located. We discuss the instantiation and execution of the PINN method using Google Colab implementation. We discuss the benefits and limitations of the PINN implementation.
用于模拟斯匹次卑尔根岛污染传播的图语法和物理信息神经网络
本文提出了两种计算方法,用于模拟平流扩散方程描述的污染传播。第一种方法采用图语法来描述使用三维有限元法的无网格求解器进行模拟时所使用的计算网格的生成过程。图变换规则表达了三维 Rivara 最长边细化算法。该求解器用于一个示例应用:对燃煤发电厂产生的污染及其在斯匹次卑尔根群岛首府朗伊尔宾市的传播进行三维模拟。第二个计算代码基于物理信息神经网络方法。它用于计算朗伊尔城所在山谷的污染消散情况。我们讨论了使用 Google Colab 实现的 PINN 方法的实例化和执行。我们讨论了 PINN 实现的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信