The Fundamental Subspaces of Ensemble Kalman Inversion

Elizabeth Qian, Christopher Beattie
{"title":"The Fundamental Subspaces of Ensemble Kalman Inversion","authors":"Elizabeth Qian, Christopher Beattie","doi":"arxiv-2409.08862","DOIUrl":null,"url":null,"abstract":"Ensemble Kalman Inversion (EKI) methods are a family of iterative methods for\nsolving weighted least-squares problems, especially those arising in scientific\nand engineering inverse problems in which unknown parameters or states are\nestimated from observed data by minimizing the weighted square norm of the data\nmisfit. Implementation of EKI requires only evaluation of the forward model\nmapping the unknown to the data, and does not require derivatives or adjoints\nof the forward model. The methods therefore offer an attractive alternative to\ngradient-based optimization approaches in large-scale inverse problems where\nevaluating derivatives or adjoints of the forward model is computationally\nintractable. This work presents a new analysis of the behavior of both\ndeterministic and stochastic versions of basic EKI for linear observation\noperators, resulting in a natural interpretation of EKI's convergence\nproperties in terms of ``fundamental subspaces'' analogous to Strang's\nfundamental subspaces of linear algebra. Our analysis directly examines the\ndiscrete EKI iterations instead of their continuous-time limits considered in\nprevious analyses, and provides spectral decompositions that define six\nfundamental subspaces of EKI spanning both observation and state spaces. This\napproach verifies convergence rates previously derived for continuous-time\nlimits, and yields new results describing both deterministic and stochastic EKI\nconvergence behavior with respect to the standard minimum-norm weighted least\nsquares solution in terms of the fundamental subspaces. Numerical experiments\nillustrate our theoretical results.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ensemble Kalman Inversion (EKI) methods are a family of iterative methods for solving weighted least-squares problems, especially those arising in scientific and engineering inverse problems in which unknown parameters or states are estimated from observed data by minimizing the weighted square norm of the data misfit. Implementation of EKI requires only evaluation of the forward model mapping the unknown to the data, and does not require derivatives or adjoints of the forward model. The methods therefore offer an attractive alternative to gradient-based optimization approaches in large-scale inverse problems where evaluating derivatives or adjoints of the forward model is computationally intractable. This work presents a new analysis of the behavior of both deterministic and stochastic versions of basic EKI for linear observation operators, resulting in a natural interpretation of EKI's convergence properties in terms of ``fundamental subspaces'' analogous to Strang's fundamental subspaces of linear algebra. Our analysis directly examines the discrete EKI iterations instead of their continuous-time limits considered in previous analyses, and provides spectral decompositions that define six fundamental subspaces of EKI spanning both observation and state spaces. This approach verifies convergence rates previously derived for continuous-time limits, and yields new results describing both deterministic and stochastic EKI convergence behavior with respect to the standard minimum-norm weighted least squares solution in terms of the fundamental subspaces. Numerical experiments illustrate our theoretical results.
集合卡尔曼反演的基本子空间
集合卡尔曼反演(EKI)方法是一系列用于解决加权最小二乘法问题的迭代法,特别是在科学和工程反演问题中出现的问题,在这些问题中,通过最小化数据拟合的加权平方准则,从观测数据中估计未知参数或状态。EKI 的实现只需要对映射未知数据的前向模型进行评估,而不需要前向模型的导数或邻接。因此,在大规模逆问题中,评估前向模型的导数或邻接值在计算上是非常困难的,而这些方法为基于梯度的优化方法提供了一个有吸引力的替代方案。本研究对线性观测运算器的基本 EKI 的确定性和随机版本的行为进行了新的分析,从而用类似于 Strang 线性代数基本子空间的 "基本子空间 "对 EKI 的收敛特性进行了自然解释。我们的分析直接考察了离散 EKI 迭代,而不是之前分析中考虑的连续时间极限,并提供了谱分解,定义了 EKI 的六个基本子空间,同时跨越观测空间和状态空间。这种方法验证了之前针对连续时间极限得出的收敛率,并产生了新的结果,描述了确定性和随机性 EKI 收敛行为,以及根据基本子空间得出的标准最小规范加权最小二乘法解。数值实验证明了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信