Estimatable variation neural networks and their application to ODEs and scalar hyperbolic conservation laws

Mária Lukáčová-Medviďová, Simon Schneider
{"title":"Estimatable variation neural networks and their application to ODEs and scalar hyperbolic conservation laws","authors":"Mária Lukáčová-Medviďová, Simon Schneider","doi":"arxiv-2409.08909","DOIUrl":null,"url":null,"abstract":"We introduce estimatable variation neural networks (EVNNs), a class of neural\nnetworks that allow a computationally cheap estimate on the $BV$ norm motivated\nby the space $BMV$ of functions with bounded M-variation. We prove a universal\napproximation theorem for EVNNs and discuss possible implementations. We\nconstruct sequences of loss functionals for ODEs and scalar hyperbolic\nconservation laws for which a vanishing loss leads to convergence. Moreover, we\nshow the existence of sequences of loss minimizing neural networks if the\nsolution is an element of $BMV$. Several numerical test cases illustrate that\nit is possible to use standard techniques to minimize these loss functionals\nfor EVNNs.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce estimatable variation neural networks (EVNNs), a class of neural networks that allow a computationally cheap estimate on the $BV$ norm motivated by the space $BMV$ of functions with bounded M-variation. We prove a universal approximation theorem for EVNNs and discuss possible implementations. We construct sequences of loss functionals for ODEs and scalar hyperbolic conservation laws for which a vanishing loss leads to convergence. Moreover, we show the existence of sequences of loss minimizing neural networks if the solution is an element of $BMV$. Several numerical test cases illustrate that it is possible to use standard techniques to minimize these loss functionals for EVNNs.
可估算变异神经网络及其在 ODE 和标量双曲守恒定律中的应用
我们介绍了可估算变异神经网络(EVNNs),这是一类允许对具有有界 M 变异的函数空间 $BMV$ 的 $BV$ 准则进行计算廉价估算的神经网络。我们证明了 EVNN 的通用近似定理,并讨论了可能的实现方法。我们为 ODE 和标量双曲守恒律构建了损失函数序列,对于这些函数,损失消失会导致收敛。此外,我们还展示了如果解是$BMV$的一个元素,损失最小化神经网络序列的存在性。几个数值测试案例说明,可以使用标准技术最小化 EVNN 的这些损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信