Analysis of Centrifugal Clutches in Two-Speed Automatic Transmissions with Deep Learning-Based Engagement Prediction

Bo-Yi Lin, Kai Chun Lin
{"title":"Analysis of Centrifugal Clutches in Two-Speed Automatic Transmissions with Deep Learning-Based Engagement Prediction","authors":"Bo-Yi Lin, Kai Chun Lin","doi":"arxiv-2409.09755","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive numerical analysis of centrifugal clutch\nsystems integrated with a two-speed automatic transmission, a key component in\nautomotive torque transfer. Centrifugal clutches enable torque transmission\nbased on rotational speed without external controls. The study systematically\nexamines various clutch configurations effects on transmission dynamics,\nfocusing on torque transfer, upshifting, and downshifting behaviors under\ndifferent conditions. A Deep Neural Network (DNN) model predicts clutch\nengagement using parameters such as spring preload and shoe mass, offering an\nefficient alternative to complex simulations. The integration of deep learning\nand numerical modeling provides critical insights for optimizing clutch\ndesigns, enhancing transmission performance and efficiency.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"157 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive numerical analysis of centrifugal clutch systems integrated with a two-speed automatic transmission, a key component in automotive torque transfer. Centrifugal clutches enable torque transmission based on rotational speed without external controls. The study systematically examines various clutch configurations effects on transmission dynamics, focusing on torque transfer, upshifting, and downshifting behaviors under different conditions. A Deep Neural Network (DNN) model predicts clutch engagement using parameters such as spring preload and shoe mass, offering an efficient alternative to complex simulations. The integration of deep learning and numerical modeling provides critical insights for optimizing clutch designs, enhancing transmission performance and efficiency.
利用基于深度学习的接合预测分析双速自动变速器中的离心离合器
本文对与双速自动变速器集成在一起的离心离合器系统进行了全面的数值分析,双速自动变速器是汽车扭矩传递的关键部件。离心离合器无需外部控制即可实现基于转速的扭矩传递。本研究系统地探讨了各种离合器配置对变速器动力学的影响,重点关注不同条件下的扭矩传递、升挡和降挡行为。深度神经网络(DNN)模型利用弹簧预紧力和蹄片质量等参数预测离合器的接合情况,为复杂的模拟提供了一个高效的替代方案。深度学习与数值建模的整合为优化离合器设计、提高变速器性能和效率提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信