Two-grid convergence theory for symmetric positive semidefinite linear systems

Xuefeng Xu
{"title":"Two-grid convergence theory for symmetric positive semidefinite linear systems","authors":"Xuefeng Xu","doi":"arxiv-2409.09442","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the convergence theory of two-grid methods for\nsymmetric positive semidefinite linear systems, with particular focus on the\nsingular case. In the case where the Moore--Penrose inverse of coarse-grid\nmatrix is used as a coarse solver, we derive a succinct identity for\ncharacterizing the convergence factor of two-grid methods. More generally, we\npresent some convergence estimates for two-grid methods with approximate coarse\nsolvers, including both linear and general cases. A key feature of our analysis\nis that it does not require any additional assumptions on the system matrix,\nespecially on its null space.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the convergence theory of two-grid methods for symmetric positive semidefinite linear systems, with particular focus on the singular case. In the case where the Moore--Penrose inverse of coarse-grid matrix is used as a coarse solver, we derive a succinct identity for characterizing the convergence factor of two-grid methods. More generally, we present some convergence estimates for two-grid methods with approximate coarse solvers, including both linear and general cases. A key feature of our analysis is that it does not require any additional assumptions on the system matrix, especially on its null space.
对称正半有限线性系统的双网格收敛理论
本文主要研究对称正半有限线性系统的双网格方法的收敛理论,尤其关注正弦情况。在使用粗网格矩阵的 Moore-Penrose 逆作为粗求解器的情况下,我们推导出了描述双网格方法收敛因子的简明特性。更一般地说,我们提出了一些使用近似粗解器的双网格方法的收敛估计,包括线性和一般情况。我们分析的一个主要特点是,它不需要对系统矩阵,特别是其空空间做任何额外的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信