Matrix perturbation analysis of methods for extracting singular values from approximate singular subspaces

Lorenzo Lazzarino, Hussam Al Daas, Yuji Nakatsukasa
{"title":"Matrix perturbation analysis of methods for extracting singular values from approximate singular subspaces","authors":"Lorenzo Lazzarino, Hussam Al Daas, Yuji Nakatsukasa","doi":"arxiv-2409.09187","DOIUrl":null,"url":null,"abstract":"Given (orthonormal) approximations $\\tilde{U}$ and $\\tilde{V}$ to the left\nand right subspaces spanned by the leading singular vectors of a matrix $A$, we\ndiscuss methods to approximate the leading singular values of $A$ and study\ntheir accuracy. In particular, we focus our analysis on the generalized\nNystr\\\"om approximation, as surprisingly, it is able to obtain significantly\nbetter accuracy than classical methods, namely Rayleigh-Ritz and (one-sided)\nprojected SVD. A key idea of the analysis is to view the methods as finding the exact\nsingular values of a perturbation of $A$. In this context, we derive a matrix\nperturbation result that exploits the structure of such $2\\times2$ block matrix\nperturbation. Furthermore, we extend it to block tridiagonal matrices. We then\nobtain bounds on the accuracy of the extracted singular values. This leads to\nsharp bounds that predict well the approximation error trends and explain the\ndifference in the behavior of these methods. Finally, we present an approach to\nderive an a-posteriori version of those bounds, which are more amenable to\ncomputation in practice.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given (orthonormal) approximations $\tilde{U}$ and $\tilde{V}$ to the left and right subspaces spanned by the leading singular vectors of a matrix $A$, we discuss methods to approximate the leading singular values of $A$ and study their accuracy. In particular, we focus our analysis on the generalized Nystr\"om approximation, as surprisingly, it is able to obtain significantly better accuracy than classical methods, namely Rayleigh-Ritz and (one-sided) projected SVD. A key idea of the analysis is to view the methods as finding the exact singular values of a perturbation of $A$. In this context, we derive a matrix perturbation result that exploits the structure of such $2\times2$ block matrix perturbation. Furthermore, we extend it to block tridiagonal matrices. We then obtain bounds on the accuracy of the extracted singular values. This leads to sharp bounds that predict well the approximation error trends and explain the difference in the behavior of these methods. Finally, we present an approach to derive an a-posteriori version of those bounds, which are more amenable to computation in practice.
从近似奇异子空间提取奇异值方法的矩阵扰动分析
给定矩阵 $A$ 的前奇异向量所跨的左右子空间的(正交)近似值 $\tilde{U}$ 和 $\tilde{V}$,我们讨论近似 $A$ 的前奇异值的方法,并研究它们的精度。特别是,我们将分析重点放在广义 Nystr\"om 近似上,因为令人惊讶的是,它能够获得比经典方法(即 Rayleigh-Ritz 和(单侧)投影 SVD)更高的精度。分析的一个关键思路是将这些方法视为寻找 $A$ 的扰动的精确奇异值。在此背景下,我们推导出一个矩阵扰动结果,它利用了这种 $2/times2$ 块矩阵扰动的结构。此外,我们还将其扩展至块三对角矩阵。然后,我们获得了提取奇异值的精度边界。这就得出了能很好预测近似误差趋势的锐界,并解释了这些方法的行为差异。最后,我们提出了一种方法来提取这些边界的后验版本,这在实践中更易于计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信