High-Order Oscillation-Eliminating Hermite WENO Method for Hyperbolic Conservation Laws

Chuan Fan, Kailiang Wu
{"title":"High-Order Oscillation-Eliminating Hermite WENO Method for Hyperbolic Conservation Laws","authors":"Chuan Fan, Kailiang Wu","doi":"arxiv-2409.09632","DOIUrl":null,"url":null,"abstract":"This paper proposes high-order accurate, oscillation-eliminating Hermite\nweighted essentially non-oscillatory (OE-HWENO) finite volume schemes for\nhyperbolic conservation laws. The OE-HWENO schemes apply an OE procedure after\neach Runge--Kutta stage, dampening the first-order moments of the HWENO\nsolution to suppress spurious oscillations without any problem-dependent\nparameters. This OE procedure acts as a filter, derived from the solution\noperator of a novel damping equation, solved exactly without discretization. As\na result, the OE-HWENO method remains stable with a normal CFL number, even for\nstrong shocks producing highly stiff damping terms. To ensure the method's\nnon-oscillatory property across varying scales and wave speeds, we design a\nscale- and evolution-invariant damping equation and propose a dimensionless\ntransformation for HWENO reconstruction. The OE-HWENO method offers several\nadvantages over existing HWENO methods: the OE procedure is efficient and easy\nto implement, requiring only simple multiplication of first-order moments; it\npreserves high-order accuracy, local compactness, and spectral properties. The\nnon-intrusive OE procedure can be integrated seamlessly into existing HWENO\ncodes. Finally, we analyze the bound-preserving (BP) property using optimal\ncell average decomposition, relaxing the BP time step-size constraint and\nreducing decomposition points, improving efficiency. Extensive benchmarks\nvalidate the method's accuracy, efficiency, resolution, and robustness.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes high-order accurate, oscillation-eliminating Hermite weighted essentially non-oscillatory (OE-HWENO) finite volume schemes for hyperbolic conservation laws. The OE-HWENO schemes apply an OE procedure after each Runge--Kutta stage, dampening the first-order moments of the HWENO solution to suppress spurious oscillations without any problem-dependent parameters. This OE procedure acts as a filter, derived from the solution operator of a novel damping equation, solved exactly without discretization. As a result, the OE-HWENO method remains stable with a normal CFL number, even for strong shocks producing highly stiff damping terms. To ensure the method's non-oscillatory property across varying scales and wave speeds, we design a scale- and evolution-invariant damping equation and propose a dimensionless transformation for HWENO reconstruction. The OE-HWENO method offers several advantages over existing HWENO methods: the OE procedure is efficient and easy to implement, requiring only simple multiplication of first-order moments; it preserves high-order accuracy, local compactness, and spectral properties. The non-intrusive OE procedure can be integrated seamlessly into existing HWENO codes. Finally, we analyze the bound-preserving (BP) property using optimal cell average decomposition, relaxing the BP time step-size constraint and reducing decomposition points, improving efficiency. Extensive benchmarks validate the method's accuracy, efficiency, resolution, and robustness.
双曲守恒定律的高阶振荡消除赫米特 WENO 方法
本文针对双曲守恒定律提出了高阶精确、消除振荡的赫尔墨特加权基本无振荡(OE-HWENO)有限体积方案。OE-HWENO 方案在 Runge--Kutta 阶段之后采用 OE 程序,对 HWENOsolution 的一阶矩进行阻尼,以抑制杂散振荡,而无需任何与问题相关的参数。该 OE 程序就像一个滤波器,源自一个新颖的阻尼方程的求解算子,无需离散化即可精确求解。因此,即使对产生高刚性阻尼项的强冲击,OE-HWENO 方法也能在正常 CFL 数下保持稳定。为了确保该方法在不同尺度和波速下的非振荡特性,我们设计了阶跃和演化不变的阻尼方程,并提出了一种用于 HWENO 重构的无维度变换。与现有的 HWENO 方法相比,OE-HWENO 方法具有以下几个优点:OE 程序高效且易于实现,只需简单的一阶矩乘法;它保留了高阶精度、局部紧凑性和频谱特性。然后,侵入式 OE 程序可以无缝集成到现有的 HWENO 代码中。最后,我们利用最优单元平均分解分析了边界保留(BP)特性,放宽了 BP 时间步长约束并减少了分解点,从而提高了效率。大量基准验证了该方法的准确性、效率、分辨率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信