Local MALA-within-Gibbs for Bayesian image deblurring with total variation prior

Rafael Flock, Shuigen Liu, Yiqiu Dong, Xin T. Tong
{"title":"Local MALA-within-Gibbs for Bayesian image deblurring with total variation prior","authors":"Rafael Flock, Shuigen Liu, Yiqiu Dong, Xin T. Tong","doi":"arxiv-2409.09810","DOIUrl":null,"url":null,"abstract":"We consider Bayesian inference for image deblurring with total variation (TV)\nprior. Since the posterior is analytically intractable, we resort to Markov\nchain Monte Carlo (MCMC) methods. However, since most MCMC methods\nsignificantly deteriorate in high dimensions, they are not suitable to handle\nhigh resolution imaging problems. In this paper, we show how low-dimensional\nsampling can still be facilitated by exploiting the sparse conditional\nstructure of the posterior. To this end, we make use of the local structures of\nthe blurring operator and the TV prior by partitioning the image into\nrectangular blocks and employing a blocked Gibbs sampler with proposals\nstemming from the Metropolis-Hastings adjusted Langevin Algorithm (MALA). We\nprove that this MALA-within-Gibbs (MLwG) sampling algorithm has\ndimension-independent block acceptance rates and dimension-independent\nconvergence rate. In order to apply the MALA proposals, we approximate the TV\nby a smoothed version, and show that the introduced approximation error is\nevenly distributed and dimension-independent. Since the posterior is a Gibbs\ndensity, we can use the Hammersley-Clifford Theorem to identify the posterior\nconditionals which only depend locally on the neighboring blocks. We outline\ncomputational strategies to evaluate the conditionals, which are the target\ndensities in the Gibbs updates, locally and in parallel. In two numerical\nexperiments, we validate the dimension-independent properties of the MLwG\nalgorithm and demonstrate its superior performance over MALA.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Bayesian inference for image deblurring with total variation (TV) prior. Since the posterior is analytically intractable, we resort to Markov chain Monte Carlo (MCMC) methods. However, since most MCMC methods significantly deteriorate in high dimensions, they are not suitable to handle high resolution imaging problems. In this paper, we show how low-dimensional sampling can still be facilitated by exploiting the sparse conditional structure of the posterior. To this end, we make use of the local structures of the blurring operator and the TV prior by partitioning the image into rectangular blocks and employing a blocked Gibbs sampler with proposals stemming from the Metropolis-Hastings adjusted Langevin Algorithm (MALA). We prove that this MALA-within-Gibbs (MLwG) sampling algorithm has dimension-independent block acceptance rates and dimension-independent convergence rate. In order to apply the MALA proposals, we approximate the TV by a smoothed version, and show that the introduced approximation error is evenly distributed and dimension-independent. Since the posterior is a Gibbs density, we can use the Hammersley-Clifford Theorem to identify the posterior conditionals which only depend locally on the neighboring blocks. We outline computational strategies to evaluate the conditionals, which are the target densities in the Gibbs updates, locally and in parallel. In two numerical experiments, we validate the dimension-independent properties of the MLwG algorithm and demonstrate its superior performance over MALA.
利用总变异先验对贝叶斯图像去模糊进行局部 MALA-within-Gibbs 处理
我们考虑用贝叶斯推理方法对图像去模糊进行总变异(TV)先验推理。由于后验难以分析,我们采用了马尔可夫链蒙特卡罗(MCMC)方法。然而,由于大多数 MCMC 方法在高维度下会显著恶化,因此不适合处理高分辨率成像问题。在本文中,我们展示了如何利用后验的稀疏条件结构来促进低维取样。为此,我们利用模糊算子和电视先验的局部结构,将图像分割成矩形块,并采用阻塞吉布斯采样器,其建议源自 Metropolis-Hastings 调整朗文算法 (MALA)。我们证明,这种 MALA-within-Gibbs(MLwG)采样算法具有与维度无关的块接受率和与维度无关的收敛率。为了应用 MALA 建议,我们用平滑版本对电视进行了近似,并证明引入的近似误差是均匀分布且与维度无关的。由于后验是一个吉布斯密度,我们可以利用哈默斯利-克里福德定理来确定后验条件,这些后验条件只在局部取决于相邻的区块。我们概述了本地并行评估条件的计算策略,这些条件是吉布斯更新的目标密度。在两个数值实验中,我们验证了 MLwGalgorithm 与维度无关的特性,并证明其性能优于 MALA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信