A Fractional spectral method for weakly singular Volterra integro-differential equations with delays of the third-kind

Borui Zhao
{"title":"A Fractional spectral method for weakly singular Volterra integro-differential equations with delays of the third-kind","authors":"Borui Zhao","doi":"arxiv-2409.10861","DOIUrl":null,"url":null,"abstract":"In this paper, we present a fractional spectral collocation method for\nsolving a class of weakly singular Volterra integro-differential equations\n(VDIEs) with proportional delays and cordial operators. Assuming the underlying\nsolutions are in a specific function space, we derive error estimates in the\n$L^2_{\\omega^{\\alpha,\\beta,\\lambda}}$ and $L^{\\infty}$-norms. A rigorous proof\nreveals that the numerical errors decay exponentially with the appropriate\nselections of parameters $\\lambda$. Subsequently, numerical experiments are\nconducted to validate the effectiveness of the method.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a fractional spectral collocation method for solving a class of weakly singular Volterra integro-differential equations (VDIEs) with proportional delays and cordial operators. Assuming the underlying solutions are in a specific function space, we derive error estimates in the $L^2_{\omega^{\alpha,\beta,\lambda}}$ and $L^{\infty}$-norms. A rigorous proof reveals that the numerical errors decay exponentially with the appropriate selections of parameters $\lambda$. Subsequently, numerical experiments are conducted to validate the effectiveness of the method.
带第三类延迟的弱奇异 Volterra 积分微分方程的分数谱方法
本文提出了一种分数谱配位法,用于求解一类具有比例延迟和亲切算子的弱奇异 Volterra 积分微分方程(VDIEs)。假定基本解在特定函数空间中,我们得出了$L^2_{\omega^{\alpha,\beta,\lambda}}$和$L^{\infty}$正的误差估计。严格的证明揭示了数值误差随着参数 $\lambda$ 的适当选择呈指数衰减。随后,通过数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信