A multiscale approach to the stationary Ginzburg-Landau equations of superconductivity

Christian Döding, Benjamin Dörich, Patrick Henning
{"title":"A multiscale approach to the stationary Ginzburg-Landau equations of superconductivity","authors":"Christian Döding, Benjamin Dörich, Patrick Henning","doi":"arxiv-2409.12023","DOIUrl":null,"url":null,"abstract":"In this work, we study the numerical approximation of minimizers of the\nGinzburg-Landau free energy, a common model to describe the behavior of\nsuperconductors under magnetic fields. The unknowns are the order parameter,\nwhich characterizes the density of superconducting charge carriers, and the\nmagnetic vector potential, which allows to deduce the magnetic field that\npenetrates the superconductor. Physically important and numerically challenging\nare especially settings which involve lattices of quantized vortices which can\nbe formed in materials with a large Ginzburg-Landau parameter $\\kappa$. In\nparticular, $\\kappa$ introduces a severe mesh resolution condition for\nnumerical approximations. In order to reduce these computational restrictions,\nwe investigate a particular discretization which is based on mixed meshes where\nwe apply a Lagrange finite element approach for the vector potential and a\nlocalized orthogonal decomposition (LOD) approach for the order parameter. We\njustify the proposed method by a rigorous a-priori error analysis (in $L^2$ and\n$H^1$) in which we keep track of the influence of $\\kappa$ in all error\ncontributions. This allows us to conclude $\\kappa$-dependent resolution\nconditions for the various meshes and which only impose moderate practical\nconstraints compared to a conventional finite element discretization. Finally,\nour theoretical findings are illustrated by numerical experiments.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the numerical approximation of minimizers of the Ginzburg-Landau free energy, a common model to describe the behavior of superconductors under magnetic fields. The unknowns are the order parameter, which characterizes the density of superconducting charge carriers, and the magnetic vector potential, which allows to deduce the magnetic field that penetrates the superconductor. Physically important and numerically challenging are especially settings which involve lattices of quantized vortices which can be formed in materials with a large Ginzburg-Landau parameter $\kappa$. In particular, $\kappa$ introduces a severe mesh resolution condition for numerical approximations. In order to reduce these computational restrictions, we investigate a particular discretization which is based on mixed meshes where we apply a Lagrange finite element approach for the vector potential and a localized orthogonal decomposition (LOD) approach for the order parameter. We justify the proposed method by a rigorous a-priori error analysis (in $L^2$ and $H^1$) in which we keep track of the influence of $\kappa$ in all error contributions. This allows us to conclude $\kappa$-dependent resolution conditions for the various meshes and which only impose moderate practical constraints compared to a conventional finite element discretization. Finally, our theoretical findings are illustrated by numerical experiments.
超导静态金兹堡-朗道方程的多尺度方法
在这项工作中,我们研究了金兹堡-朗道自由能最小化的数值近似,这是一种描述超导体在磁场下行为的常见模型。未知数包括阶次参数(表征超导电荷载流子的密度)和磁矢量势(推导出渗透超导体的磁场)。物理上重要、数值上具有挑战性的设置尤其涉及量子化涡旋晶格,这些涡旋晶格可以在具有较大金兹堡-朗道参数 $\kappa$ 的材料中形成。特别是,$\kappa$ 为数值近似引入了苛刻的网格分辨率条件。为了减少这些计算限制,我们研究了一种基于混合网格的特殊离散化方法,即对矢量势采用拉格朗日有限元方法,对阶参数采用局部正交分解(LOD)方法。我们通过严格的先验误差分析(在$L^2$和$H^1$中)来证明所提出的方法,其中我们跟踪了所有误差贡献中$\kappa$的影响。这使我们能够为各种网格总结出依赖于 $\kappa$ 的分辨率条件,与传统的有限元离散化相比,这些条件只施加了适度的实际限制。最后,我们通过数值实验来说明我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信