Spline-based solution transfer for space-time methods in 2D+t

Logan Larose, Jude T. Anderson, David M. Williams
{"title":"Spline-based solution transfer for space-time methods in 2D+t","authors":"Logan Larose, Jude T. Anderson, David M. Williams","doi":"arxiv-2409.11639","DOIUrl":null,"url":null,"abstract":"This work introduces a new solution-transfer process for slab-based\nspace-time finite element methods. The new transfer process is based on\nHsieh-Clough-Tocher (HCT) splines and satisfies the following requirements: (i)\nit maintains high-order accuracy up to 4th order, (ii) it preserves a discrete\nmaximum principle, (iii) it enforces mass conservation, and (iv) it constructs\na smooth, continuous surrogate solution in between space-time slabs. While many\nexisting transfer methods meet the first three requirements, the fourth\nrequirement is crucial for enabling visualization and boundary condition\nenforcement for space-time applications. In this paper, we derive an error\nbound for our HCT spline-based transfer process. Additionally, we conduct\nnumerical experiments quantifying the conservative nature and order of accuracy\nof the transfer process. Lastly, we present a qualitative evaluation of the\nvisualization properties of the smooth surrogate solution.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a new solution-transfer process for slab-based space-time finite element methods. The new transfer process is based on Hsieh-Clough-Tocher (HCT) splines and satisfies the following requirements: (i) it maintains high-order accuracy up to 4th order, (ii) it preserves a discrete maximum principle, (iii) it enforces mass conservation, and (iv) it constructs a smooth, continuous surrogate solution in between space-time slabs. While many existing transfer methods meet the first three requirements, the fourth requirement is crucial for enabling visualization and boundary condition enforcement for space-time applications. In this paper, we derive an error bound for our HCT spline-based transfer process. Additionally, we conduct numerical experiments quantifying the conservative nature and order of accuracy of the transfer process. Lastly, we present a qualitative evaluation of the visualization properties of the smooth surrogate solution.
基于样条的 2D+t 时空方法求解转移
本研究为基于板块的时空有限元方法引入了一种新的解转移过程。新的转移过程基于谢-克劳-托彻(HCT)样条,并满足以下要求:(i)保持高达 4 阶的高阶精度;(ii)保留离散最大原则;(iii)强制执行质量守恒;(iv)在时空板之间构建平滑、连续的代解。虽然现有的许多转移方法都能满足前三个要求,但第四个要求对于实现时空应用的可视化和边界条件强化至关重要。在本文中,我们推导出了基于 HCT 花键的转移过程的误差边界。此外,我们还进行了数值实验,量化了转移过程的保守性和精度等级。最后,我们对平滑代理解决方案的可视化特性进行了定性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信