Application of a Fourier-Type Series Approach based on Triangles of Constant Width to Letterforms

Micha Wasem, Florence Yerly
{"title":"Application of a Fourier-Type Series Approach based on Triangles of Constant Width to Letterforms","authors":"Micha Wasem, Florence Yerly","doi":"arxiv-2409.11958","DOIUrl":null,"url":null,"abstract":"In this work, we present a novel approach to type design by using\nFourier-type series to generate letterforms. We construct a Fourier-type series\nfor functions in $L^2(S^1,\\mathbb C)$ based on triangles of constant width\ninstead of circles to model the curves and shapes that define individual\ncharacters. In order to compute the coefficients of the series, we construct an\nisomorphism $\\mathcal R:L^2(S^1,\\mathbb C)\\to L^2(S^1,\\mathbb C)$ and study its\napplication to letterforms, thus presenting an alternative to the common use of\nB\\'ezier curves. The proposed method demonstrates potential for creative\nexperimentation in modern type design.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a novel approach to type design by using Fourier-type series to generate letterforms. We construct a Fourier-type series for functions in $L^2(S^1,\mathbb C)$ based on triangles of constant width instead of circles to model the curves and shapes that define individual characters. In order to compute the coefficients of the series, we construct an isomorphism $\mathcal R:L^2(S^1,\mathbb C)\to L^2(S^1,\mathbb C)$ and study its application to letterforms, thus presenting an alternative to the common use of B\'ezier curves. The proposed method demonstrates potential for creative experimentation in modern type design.
基于恒定宽度三角形的傅立叶级数方法在字母字体中的应用
在这项工作中,我们提出了一种新颖的字体设计方法,即使用傅立叶型数列来生成字形。我们为$L^2(S^1,\mathbb C)$中的函数构建了一个傅里叶型数列,该数列基于恒定宽度的三角形,而不是圆形来模拟定义单个字母的曲线和形状。为了计算数列的系数,我们构建了从 L^2(S^1,/mathbb C)$到 L^2(S^1,/mathbb C)$ 的同构关系,并研究了它在字母形式中的应用,从而提出了一种替代常用的 B\'ezier 曲线的方法。所提出的方法展示了在现代字体设计中进行创造性实验的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信