A novel Mortar Method Integration using Radial Basis Functions

Daniele Moretto, Andrea Franceschini, Massimiliano Ferronato
{"title":"A novel Mortar Method Integration using Radial Basis Functions","authors":"Daniele Moretto, Andrea Franceschini, Massimiliano Ferronato","doi":"arxiv-2409.11735","DOIUrl":null,"url":null,"abstract":"Recent advancements in computational capabilities have significantly enhanced\nthe numerical simulation of complex multiphysics and multidomain problems.\nHowever, mesh generation remains a primary bottleneck in these simulations. To\naddress this challenge, non-conforming grids are often utilized, which\nnecessitates the development of robust and efficient intergrid interpolator\noperators. This paper presents a novel approach for transferring variable\nfields across non-conforming meshes within a mortar framework, where weak\ncontinuity conditions are imposed. The key contribution of our work is the\nintroduction of an innovative algorithm that utilizes Radial Basis Function\n(RBF) interpolations to compute the mortar integral, offering a compelling\nalternative to traditional projection-based algorithms. Pairing RBF methods\nwith numerical integration techniques, we propose an efficient algorithm\ntailored for complex three-dimensional scenarios. This paper details the\nformulation, analysis, and validation of the proposed RBF algorithm through a\nseries of numerical examples, demonstrating its effectiveness. Furthermore, the\ndetails of the implementation are discussed and a test case involving a complex\ngeometry is presented, to illustrate the applicability and advantages of our\napproach in addressing real-world problems.","PeriodicalId":501162,"journal":{"name":"arXiv - MATH - Numerical Analysis","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in computational capabilities have significantly enhanced the numerical simulation of complex multiphysics and multidomain problems. However, mesh generation remains a primary bottleneck in these simulations. To address this challenge, non-conforming grids are often utilized, which necessitates the development of robust and efficient intergrid interpolator operators. This paper presents a novel approach for transferring variable fields across non-conforming meshes within a mortar framework, where weak continuity conditions are imposed. The key contribution of our work is the introduction of an innovative algorithm that utilizes Radial Basis Function (RBF) interpolations to compute the mortar integral, offering a compelling alternative to traditional projection-based algorithms. Pairing RBF methods with numerical integration techniques, we propose an efficient algorithm tailored for complex three-dimensional scenarios. This paper details the formulation, analysis, and validation of the proposed RBF algorithm through a series of numerical examples, demonstrating its effectiveness. Furthermore, the details of the implementation are discussed and a test case involving a complex geometry is presented, to illustrate the applicability and advantages of our approach in addressing real-world problems.
使用径向基函数的新型砂浆法积分法
近年来,计算能力的进步极大地增强了复杂多物理场和多域问题的数值模拟能力。然而,网格生成仍然是这些模拟的主要瓶颈。为解决这一难题,通常会使用不规则网格,这就需要开发稳健高效的网格间插值运算器。本文提出了一种在砂浆框架内跨不规则网格传输变量场的新方法,该框架施加了弱连续性条件。我们工作的主要贡献是引入了一种利用径向基函数(RBF)插值来计算灰泥积分的创新算法,为传统的基于投影的算法提供了一个引人注目的替代方案。我们将 RBF 方法与数值积分技术相结合,提出了一种适用于复杂三维场景的高效算法。本文通过一系列数值示例详细介绍了所提出的 RBF 算法的计算、分析和验证,证明了该算法的有效性。此外,还讨论了实现的细节,并介绍了一个涉及复杂几何体的测试案例,以说明我们的方法在解决实际问题中的适用性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信