Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients

Albert Alonso, Julius B. Kirkegaard, Robert G. Endres
{"title":"Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients","authors":"Albert Alonso, Julius B. Kirkegaard, Robert G. Endres","doi":"arxiv-2409.09342","DOIUrl":null,"url":null,"abstract":"Single-cell organisms and various cell types use a range of motility modes\nwhen following a chemical gradient, but it is unclear which mode is best suited\nfor different gradients. Here, we model directional decision-making in\nchemotactic amoeboid cells as a stimulus-dependent actin recruitment contest.\nPseudopods extending from the cell body compete for a finite actin pool to push\nthe cell in their direction until one pseudopod wins and determines the\ndirection of movement. Our minimal model provides a quantitative understanding\nof the strategies cells use to reach the physical limit of accurate chemotaxis,\naligning with data without explicit gradient sensing or cellular memory for\npersistence. To generalize our model, we employ reinforcement learning\noptimization to study the effect of pseudopod suppression, a simple but\neffective cellular algorithm by which cells can suppress possible directions of\nmovement. Different pseudopod-based chemotaxis strategies emerge naturally\ndepending on the environment and its dynamics. For instance, in static\ngradients, cells can react faster at the cost of pseudopod accuracy, which is\nparticularly useful in noisy, shallow gradients where it paradoxically\nincreases chemotactic accuracy. In contrast, in dynamics gradients, cells form\n\\textit{de novo} pseudopods. Overall, our work demonstrates mechanical\nintelligence for high chemotaxis performance with minimal cellular regulation.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell organisms and various cell types use a range of motility modes when following a chemical gradient, but it is unclear which mode is best suited for different gradients. Here, we model directional decision-making in chemotactic amoeboid cells as a stimulus-dependent actin recruitment contest. Pseudopods extending from the cell body compete for a finite actin pool to push the cell in their direction until one pseudopod wins and determines the direction of movement. Our minimal model provides a quantitative understanding of the strategies cells use to reach the physical limit of accurate chemotaxis, aligning with data without explicit gradient sensing or cellular memory for persistence. To generalize our model, we employ reinforcement learning optimization to study the effect of pseudopod suppression, a simple but effective cellular algorithm by which cells can suppress possible directions of movement. Different pseudopod-based chemotaxis strategies emerge naturally depending on the environment and its dynamics. For instance, in static gradients, cells can react faster at the cost of pseudopod accuracy, which is particularly useful in noisy, shallow gradients where it paradoxically increases chemotactic accuracy. In contrast, in dynamics gradients, cells form \textit{de novo} pseudopods. Overall, our work demonstrates mechanical intelligence for high chemotaxis performance with minimal cellular regulation.
持续的伪足分裂是浅梯度中一种有效的趋化策略
单细胞生物和各种类型的细胞在跟随化学梯度时会使用一系列运动模式,但目前还不清楚哪种模式最适合不同的梯度。从细胞体延伸出来的伪足争夺有限的肌动蛋白池,将细胞推向自己的方向,直到一个伪足获胜并决定运动方向。我们的最小模型提供了对细胞为达到精确趋化的物理极限而使用的策略的定量理解,与没有明确梯度感应或细胞持久记忆的数据相一致。为了推广我们的模型,我们采用了强化学习优化来研究伪足抑制的效果,这是一种简单而有效的细胞算法,细胞可以通过它抑制可能的运动方向。根据环境及其动态变化,自然会出现不同的基于假足的趋化策略。例如,在静态梯度中,细胞可以以牺牲伪足的准确性为代价加快反应速度,这在嘈杂的浅层梯度中特别有用,因为它会自相矛盾地提高趋化的准确性。与此相反,在动态梯度中,细胞会重新形成伪足。总之,我们的工作证明了机械智能能以最小的细胞调控实现高趋化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信