Zengshuang Chen, Xiankai Li, Ming Ma, Yang Zhang, Xueguang Meng
{"title":"Numerical investigation of wingtip aerodynamic interference of two flapping wings on opposite sides","authors":"Zengshuang Chen, Xiankai Li, Ming Ma, Yang Zhang, Xueguang Meng","doi":"10.1063/5.0226399","DOIUrl":null,"url":null,"abstract":"Aerodynamic interference occurs at the wingtips when flying organisms fly in a V formation. In this paper, the wingtip aerodynamic interference of two flapping wings on opposite sides at low Reynolds numbers (Re) is numerically investigated. The effects of streamwise spacing (L1), spanwise spacing (L2), and phase angle (γ) on aerodynamic performance are considered. The results show that, compared to a single wing, a favorable combination of L1 and L2 can improve the overall thrust by 24% while keeping the overall lift essentially unchanged. In an unfavorable case, overall lift and thrust decrease by 18% and 20%, respectively. The overall aerodynamic forces are dominated by the rear wing. Analyzing the essential flow characteristics reveals the double-edged role of downwash and upwash in force generation. Moreover, it is found that the rear wing can realize the upwash/downwash exploitation by flap phasing, turning an unfavorable situation into a favorable one. The key flow physics behind this transformation lies in the relationship between the direction of wing motion and the direction of fluid velocity induced by vortices. These findings provide valuable insights into the understanding of biological phenomena and the design of new flapping wing vehicles.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"11 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226399","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Aerodynamic interference occurs at the wingtips when flying organisms fly in a V formation. In this paper, the wingtip aerodynamic interference of two flapping wings on opposite sides at low Reynolds numbers (Re) is numerically investigated. The effects of streamwise spacing (L1), spanwise spacing (L2), and phase angle (γ) on aerodynamic performance are considered. The results show that, compared to a single wing, a favorable combination of L1 and L2 can improve the overall thrust by 24% while keeping the overall lift essentially unchanged. In an unfavorable case, overall lift and thrust decrease by 18% and 20%, respectively. The overall aerodynamic forces are dominated by the rear wing. Analyzing the essential flow characteristics reveals the double-edged role of downwash and upwash in force generation. Moreover, it is found that the rear wing can realize the upwash/downwash exploitation by flap phasing, turning an unfavorable situation into a favorable one. The key flow physics behind this transformation lies in the relationship between the direction of wing motion and the direction of fluid velocity induced by vortices. These findings provide valuable insights into the understanding of biological phenomena and the design of new flapping wing vehicles.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves