Mechanics of a marine midge water locomotion

IF 4.1 2区 工程技术 Q1 MECHANICS
Chih-Hua Wu, Keryea Soong, Bang-Fuh Chen
{"title":"Mechanics of a marine midge water locomotion","authors":"Chih-Hua Wu, Keryea Soong, Bang-Fuh Chen","doi":"10.1063/5.0222806","DOIUrl":null,"url":null,"abstract":"Marine midges, tiny insects with a body size of 2 mm and a weight of 0.07 dyn, provide valuable insights into advanced locomotion techniques. Found in shallow reefs at Wanlitong, Kenting National Park, Taiwan, these midges can continuously traverse seawater surfaces for over 90 min at speeds around 340 body-lengths per second. Their flight relies on two primary mechanisms: wing sculling to utilize surface tension for thrust and wing retraction to generate aerodynamic lift. This study addresses the gap in understanding how marine midges generate the lift and thrust needed for prolonged flight. We investigated their unique locomotion by conducting experiments to measure their weight, speed, and wing frequency. These measurements informed 3D computational fluid dynamics (CFD) simulations to analyze the aerodynamic forces involved. The results highlight the critical role of the ground effect, where maintaining minimal gaps of 0.08 mm between the midge trunk and 0.055 mm at the wing tips is essential for lift. Additionally, a high wing-beat frequency exceeding 300 Hz is crucial for generating sufficient lift during wing retraction. Our findings emphasize that ground effect, forward speed (>60 cm/s), and wing-beat frequency are key factors enabling marine midges to sustain flight above the sea surface. This unique adaptation for water surface locomotion not only showcases the midge's remarkable flight capabilities but also offers valuable insights for the design of micro-air vehicles (MAVs).","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0222806","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Marine midges, tiny insects with a body size of 2 mm and a weight of 0.07 dyn, provide valuable insights into advanced locomotion techniques. Found in shallow reefs at Wanlitong, Kenting National Park, Taiwan, these midges can continuously traverse seawater surfaces for over 90 min at speeds around 340 body-lengths per second. Their flight relies on two primary mechanisms: wing sculling to utilize surface tension for thrust and wing retraction to generate aerodynamic lift. This study addresses the gap in understanding how marine midges generate the lift and thrust needed for prolonged flight. We investigated their unique locomotion by conducting experiments to measure their weight, speed, and wing frequency. These measurements informed 3D computational fluid dynamics (CFD) simulations to analyze the aerodynamic forces involved. The results highlight the critical role of the ground effect, where maintaining minimal gaps of 0.08 mm between the midge trunk and 0.055 mm at the wing tips is essential for lift. Additionally, a high wing-beat frequency exceeding 300 Hz is crucial for generating sufficient lift during wing retraction. Our findings emphasize that ground effect, forward speed (>60 cm/s), and wing-beat frequency are key factors enabling marine midges to sustain flight above the sea surface. This unique adaptation for water surface locomotion not only showcases the midge's remarkable flight capabilities but also offers valuable insights for the design of micro-air vehicles (MAVs).
海蠓水中运动的力学原理
海蠓是一种体型仅为 2 毫米、体重仅为 0.07 达因的微小昆虫,它们为研究先进的运动技术提供了宝贵的资料。这些蠓在台湾垦丁国家公园万里洞的浅礁中被发现,它们能以每秒约 340 个体长的速度连续穿越海水表面超过 90 分钟。它们的飞行主要依靠两种机制:利用表面张力产生推力的振翅和产生气动升力的缩翅。这项研究填补了人们对海蠓如何产生长时间飞行所需的升力和推力的认识空白。我们通过实验测量了它们的重量、速度和翅膀频率,研究了它们独特的运动方式。这些测量结果为三维计算流体动力学(CFD)模拟提供了依据,以分析其中涉及的空气动力。结果凸显了地面效应的关键作用,即保持蠓躯干之间 0.08 毫米和翼尖 0.055 毫米的最小间隙对升力至关重要。此外,超过 300 赫兹的高拍翅频率对于在缩翅过程中产生足够的升力至关重要。我们的研究结果表明,地面效应、前进速度(>60 cm/s)和拍翅频率是海蠓在海面上持续飞行的关键因素。这种对水面运动的独特适应不仅展示了海蠓非凡的飞行能力,也为微型飞行器(MAV)的设计提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信