Influence of different factors on gap breakdown process with hot electrode and high temperature gas medium in low voltage circuit breaker chamber based on particle-in-cell/Monte-Carlo collision simulation

IF 4.1 2区 工程技术 Q1 MECHANICS
Lijun Wang, Runze Hu, Zhuo Chen, Zhiwei Wang, Yile Wang
{"title":"Influence of different factors on gap breakdown process with hot electrode and high temperature gas medium in low voltage circuit breaker chamber based on particle-in-cell/Monte-Carlo collision simulation","authors":"Lijun Wang, Runze Hu, Zhuo Chen, Zhiwei Wang, Yile Wang","doi":"10.1063/5.0207871","DOIUrl":null,"url":null,"abstract":"Different factors such as gas composition inside the low voltage circuit breaker (LVCB) chamber and the residual plasma in the post-arc stage affect the breakdown process, which in turn affects the breaking capacity of LVCBs. In this paper, the effects of non-parallel electrode structure, gas temperature and pressure, electrode temperature, and gap distance on gap breakdown of hot electrode under high temperature gas conditions were studied, for which a particle-in-cell/Monte-Carlo collision simulation model has been established, which takes into account the effects of high-temperature gas components, cathode electron thermal emission, electron collision ionization and other effects, and simulation studies have been conducted. The simulation results show that the increase in gap gas temperature, the decrease in air pressure, and the increase in electrode temperature will lead to the gap breakdown more easily. With the increase in the gap length, the breakdown voltage increases, but the average electric field intensity required for breakdown decreases. In the non-parallel electrode structure, the breakdown occurs first at the position with the shortest gap distance, then the cathode sheath forms and extends along the electrode surface to other areas, and finally, the entire gap breaks down.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"101 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0207871","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Different factors such as gas composition inside the low voltage circuit breaker (LVCB) chamber and the residual plasma in the post-arc stage affect the breakdown process, which in turn affects the breaking capacity of LVCBs. In this paper, the effects of non-parallel electrode structure, gas temperature and pressure, electrode temperature, and gap distance on gap breakdown of hot electrode under high temperature gas conditions were studied, for which a particle-in-cell/Monte-Carlo collision simulation model has been established, which takes into account the effects of high-temperature gas components, cathode electron thermal emission, electron collision ionization and other effects, and simulation studies have been conducted. The simulation results show that the increase in gap gas temperature, the decrease in air pressure, and the increase in electrode temperature will lead to the gap breakdown more easily. With the increase in the gap length, the breakdown voltage increases, but the average electric field intensity required for breakdown decreases. In the non-parallel electrode structure, the breakdown occurs first at the position with the shortest gap distance, then the cathode sheath forms and extends along the electrode surface to other areas, and finally, the entire gap breaks down.
基于粒子入室/蒙特卡洛碰撞模拟的低压断路器室中热电极和高温气体介质对间隙击穿过程不同因素的影响
低压断路器(LVCB)腔体内的气体成分和弧后阶段的残余等离子体等不同因素会影响击穿过程,进而影响低压断路器的分断能力。本文研究了非平行电极结构、气体温度和压力、电极温度和间隙距离对高温气体条件下热电极间隙击穿的影响,为此建立了粒子在电池/蒙特卡洛碰撞模拟模型,考虑了高温气体成分、阴极电子热发射、电子碰撞电离等效应,并进行了模拟研究。仿真结果表明,间隙气体温度升高、气压降低、电极温度升高更容易导致间隙击穿。随着间隙长度的增加,击穿电压会增加,但击穿所需的平均电场强度会降低。在非平行电极结构中,击穿首先发生在间隙距离最短的位置,然后形成阴极鞘,并沿着电极表面延伸到其他区域,最后整个间隙击穿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信