Spatiotemporal Koopman decomposition of second mode instability from a hypersonic schlieren video

IF 4.1 2区 工程技术 Q1 MECHANICS
Arman C. Ghannadian, Ryan C. Gosse, Subrata Roy, Zachary D. Lawless, Samantha A. Miller, Joseph S. Jewell
{"title":"Spatiotemporal Koopman decomposition of second mode instability from a hypersonic schlieren video","authors":"Arman C. Ghannadian, Ryan C. Gosse, Subrata Roy, Zachary D. Lawless, Samantha A. Miller, Joseph S. Jewell","doi":"10.1063/5.0226443","DOIUrl":null,"url":null,"abstract":"Data-driven modal analysis methods provide a powerful way to decompose data into a sum of modes. The spatiotemporal Koopman decomposition (STKD) enables the computation of modes defined by global frequencies and growth rates in various spatial dimensions and time. The method is an extension of the dynamic mode decomposition (DMD) and higher-order dynamic mode decomposition (HODMD) that represents the data as a sum of standing and traveling, possibly growing or decaying, waves. In this paper, the STKD with HODMD is applied to schlieren video highlighting second mode instability waves traveling down the length of a 3-degree half-angle cone and a 7-degree half-angle cone, both at a freestream Mach number of 6. The HODMD is able to compute dominant modes and frequencies that align with those from associated experimental measurements of unsteady pressure fluctuations, and whose mode shapes clearly show the intensifying wavepacket structure of the waves. The STKD algorithm is used to compute streamwise wavenumbers, spatial growth rates, and wave speeds. The spatial growth rates from the STKD and the magnitudes of the HODMD mode shapes are used to compute the N-factor for waves of several frequencies. Overall, the STKD with HODMD is shown to be a useful tool for extracting spatiotemporal disturbance growth from a schlieren video.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"39 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226443","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven modal analysis methods provide a powerful way to decompose data into a sum of modes. The spatiotemporal Koopman decomposition (STKD) enables the computation of modes defined by global frequencies and growth rates in various spatial dimensions and time. The method is an extension of the dynamic mode decomposition (DMD) and higher-order dynamic mode decomposition (HODMD) that represents the data as a sum of standing and traveling, possibly growing or decaying, waves. In this paper, the STKD with HODMD is applied to schlieren video highlighting second mode instability waves traveling down the length of a 3-degree half-angle cone and a 7-degree half-angle cone, both at a freestream Mach number of 6. The HODMD is able to compute dominant modes and frequencies that align with those from associated experimental measurements of unsteady pressure fluctuations, and whose mode shapes clearly show the intensifying wavepacket structure of the waves. The STKD algorithm is used to compute streamwise wavenumbers, spatial growth rates, and wave speeds. The spatial growth rates from the STKD and the magnitudes of the HODMD mode shapes are used to compute the N-factor for waves of several frequencies. Overall, the STKD with HODMD is shown to be a useful tool for extracting spatiotemporal disturbance growth from a schlieren video.
高超音速离散视频中二模不稳定性的时空库普曼分解
数据驱动的模态分析方法提供了一种将数据分解为模态总和的强大方法。时空库普曼分解法(STKD)可以计算由不同空间维度和时间的全局频率和增长率定义的模态。该方法是动态模式分解(DMD)和高阶动态模式分解(HODMD)的扩展,将数据表示为驻波和行波(可能是增长波或衰减波)的总和。本文将 STKD 和 HODMD 应用于突出显示沿 3 度半角锥体和 7 度半角锥体长度行进的二模不稳定波的裂片视频,这两个锥体的自由流马赫数均为 6。 HODMD 能够计算出与相关的非稳定压力波动实验测量结果一致的主导模态和频率,其模态形状清楚地显示了波的增强波包结构。STKD 算法用于计算流向波数、空间增长率和波速。STKD 算法得出的空间增长率和 HODMD 模式振型的大小用于计算多个频率波浪的 N 因子。总之,STKD 和 HODMD 被证明是从裂隙视频中提取时空扰动增长的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信