Bowen Hu, Yongjie Ren, Rui Sun, Shengcheng Wang, Shanjie Su
{"title":"Heterogeneity properties and permeability of shale matrix at nano-scale and micron-scale","authors":"Bowen Hu, Yongjie Ren, Rui Sun, Shengcheng Wang, Shanjie Su","doi":"10.1063/5.0223200","DOIUrl":null,"url":null,"abstract":"Heterogeneity of shale pores at nano-scale and micrometer-scale is of great significance to gas transport properties. In this study, the pore structure of shale samples from lower Silurian Longmaxi Formation in the Sichuan basin is investigated by field emission-scanning electron microscopy (FE-SEM) and x-ray micro-computed tomography (Xμ-CT) technology. Based on fractal theory, the lacunarity is introduced to describe the clustering degree of pores in shale matrix, which can compensate for the limitations of fractal dimension. Combining lacunarity with fractal dimension allows for quantification of subtle differences in pore spatial distribution. For FE-SEM images at nano-scales, the fractal dimension changes in a “U” shape, while lacunarity changes in a “∩” shape. For Xμ-CT images at micrometer-scale, both the fractal dimension and lacunarity change in a logarithmic function. Lacunarity at both nano-scale and micrometer-scale linearly decreases with the increase in fractal dimension. By three-dimensional (3D) pore network modeling analysis, the structure properties of the connected pores, such as the number of pores and throats, pore diameter, pore volume, pore surface, throat length, and coordination number, are quantitatively calculated, and these structure parameters show strong heterogeneity. The average coordination number of the connected pores ranges in 2.92–4.36. This indicates that these pores in shale matrix have poor connectivity. The permeability varies from 0.06 to 0.17 μm2 in two-dimensional (2D) Xμ-CT images but from 3.20 to 34.99 μm2 in a 3D structure. The permeability in the 3D structure is about two order higher in magnitude than that in the 2D Xμ-CT images.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"17 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0223200","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneity of shale pores at nano-scale and micrometer-scale is of great significance to gas transport properties. In this study, the pore structure of shale samples from lower Silurian Longmaxi Formation in the Sichuan basin is investigated by field emission-scanning electron microscopy (FE-SEM) and x-ray micro-computed tomography (Xμ-CT) technology. Based on fractal theory, the lacunarity is introduced to describe the clustering degree of pores in shale matrix, which can compensate for the limitations of fractal dimension. Combining lacunarity with fractal dimension allows for quantification of subtle differences in pore spatial distribution. For FE-SEM images at nano-scales, the fractal dimension changes in a “U” shape, while lacunarity changes in a “∩” shape. For Xμ-CT images at micrometer-scale, both the fractal dimension and lacunarity change in a logarithmic function. Lacunarity at both nano-scale and micrometer-scale linearly decreases with the increase in fractal dimension. By three-dimensional (3D) pore network modeling analysis, the structure properties of the connected pores, such as the number of pores and throats, pore diameter, pore volume, pore surface, throat length, and coordination number, are quantitatively calculated, and these structure parameters show strong heterogeneity. The average coordination number of the connected pores ranges in 2.92–4.36. This indicates that these pores in shale matrix have poor connectivity. The permeability varies from 0.06 to 0.17 μm2 in two-dimensional (2D) Xμ-CT images but from 3.20 to 34.99 μm2 in a 3D structure. The permeability in the 3D structure is about two order higher in magnitude than that in the 2D Xμ-CT images.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves