{"title":"Numerical simulation of manta ray swimming using a smoothed-particle hydrodynamics method and investigation of the vortical structures in the wake","authors":"Tian-Yu Gao, Peng-Nan Sun, Xiao-Ting Huang, Jiao-Long Zhao, Yang Xu, Shi-Yun Zhong","doi":"10.1063/5.0228318","DOIUrl":null,"url":null,"abstract":"A three-dimensional smoothed-particle hydrodynamics (SPH) method is used to study the moving boundary problem of a swimming manta ray, focusing on Eulerian and Lagrangian coherent structures. The manta ray's boundary motion is predefined by a specific equation. The calculated hydrodynamic results and Eulerian coherent structures are compared with data from the literature. To improve computational stability and efficiency, the δ+-SPH model used in this study incorporates tensile instability control and an improved adaptive particle-refinement technique. By comparing and analyzing the Eulerian and Lagrangian coherent structures, the relationship between these vortex structures and hydrodynamic force generation is examined, revealing the jet mechanism in the manta ray's wake. The SPH method presented herein is robust and efficient for calculating biomimetic propulsion problems involving moving boundaries with large deformations, and it can accurately identify vortex structures. The approach of this study provides an effective simulation tool for investigating biomimetic propulsion problems such as bird flight and fish swimming.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"206 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0228318","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A three-dimensional smoothed-particle hydrodynamics (SPH) method is used to study the moving boundary problem of a swimming manta ray, focusing on Eulerian and Lagrangian coherent structures. The manta ray's boundary motion is predefined by a specific equation. The calculated hydrodynamic results and Eulerian coherent structures are compared with data from the literature. To improve computational stability and efficiency, the δ+-SPH model used in this study incorporates tensile instability control and an improved adaptive particle-refinement technique. By comparing and analyzing the Eulerian and Lagrangian coherent structures, the relationship between these vortex structures and hydrodynamic force generation is examined, revealing the jet mechanism in the manta ray's wake. The SPH method presented herein is robust and efficient for calculating biomimetic propulsion problems involving moving boundaries with large deformations, and it can accurately identify vortex structures. The approach of this study provides an effective simulation tool for investigating biomimetic propulsion problems such as bird flight and fish swimming.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves