Han Meng, Yuzhong Yang, Haijun Guo, Wei Hou, Xinwang Li, Fenghua An, Rui Zhang, Li Chen, Tenglong Rong, Daming Yang, Lichao Cheng, Yufen Niu
{"title":"Experimental investigation on the gas pressure influence laws and mechanical mechanism of coal and gas outbursts","authors":"Han Meng, Yuzhong Yang, Haijun Guo, Wei Hou, Xinwang Li, Fenghua An, Rui Zhang, Li Chen, Tenglong Rong, Daming Yang, Lichao Cheng, Yufen Niu","doi":"10.1063/5.0226658","DOIUrl":null,"url":null,"abstract":"With the increasing frequency and intensity of coal and gas outburst disasters under deep mining conditions, studying the outburst mechanism of occurrence has great significance for outbursts prevention and control. The evolution law of coal and gas outbursts under different gas pressure is proposed. The outbursts law is analyzed utilizing the self-developed simulation experiment system of coal and gas outbursts, and the simulation experiment is carried out under the gas pressure of 0.45, 0.8, and 1.5 MPa. In the experiment, the gas pressure drops curves, the relative intensity change, the interval distribution of coal powder, and the evolution of outburst hole and the migration rate of coal powder are analyzed. The results indicate that (1) the gas pressure detected by the No. 4 gas pressure sensor starts to drop first; (2) the gas pressure is positively proportional to the relative outburst intensity. When the gas pressure increases from 0.45 to 0.80 MPa and then to 1.5 MPa, the farthest outburst distance of coal powder increases from 10 to 15 m and then to 21 m, and the corresponding relative outburst intensity increases from 22.94% to 35.74% and then to 45.73%, respectively. (3) The average proportion of coal particles size less than 0.28 mm and larger than 1 mm under each corresponding outburst interval is 40.75% and 22.53%, respectively. Experimental results show that the gas pressure plays an essential role in the secondary crushing and pulverization of coal samples during the outburst process. (4) The throwing velocity of the pulverized coal is increased with the gas pressure near the outburst hole. When the gas pressure is 0.8 MPa, the throwing velocity of pulverized coal reaches the maximum value of 32.40 m/s. (5) The dimensional characteristics and the location initiation of the outburst hole are obtained. The results showed that the outburst process of coal is mainly in two failure forms: pulverization and spallation. The research results provide a theoretical basis and test data support for the prevention and control of coal and gas outburst disasters.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"32 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226658","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing frequency and intensity of coal and gas outburst disasters under deep mining conditions, studying the outburst mechanism of occurrence has great significance for outbursts prevention and control. The evolution law of coal and gas outbursts under different gas pressure is proposed. The outbursts law is analyzed utilizing the self-developed simulation experiment system of coal and gas outbursts, and the simulation experiment is carried out under the gas pressure of 0.45, 0.8, and 1.5 MPa. In the experiment, the gas pressure drops curves, the relative intensity change, the interval distribution of coal powder, and the evolution of outburst hole and the migration rate of coal powder are analyzed. The results indicate that (1) the gas pressure detected by the No. 4 gas pressure sensor starts to drop first; (2) the gas pressure is positively proportional to the relative outburst intensity. When the gas pressure increases from 0.45 to 0.80 MPa and then to 1.5 MPa, the farthest outburst distance of coal powder increases from 10 to 15 m and then to 21 m, and the corresponding relative outburst intensity increases from 22.94% to 35.74% and then to 45.73%, respectively. (3) The average proportion of coal particles size less than 0.28 mm and larger than 1 mm under each corresponding outburst interval is 40.75% and 22.53%, respectively. Experimental results show that the gas pressure plays an essential role in the secondary crushing and pulverization of coal samples during the outburst process. (4) The throwing velocity of the pulverized coal is increased with the gas pressure near the outburst hole. When the gas pressure is 0.8 MPa, the throwing velocity of pulverized coal reaches the maximum value of 32.40 m/s. (5) The dimensional characteristics and the location initiation of the outburst hole are obtained. The results showed that the outburst process of coal is mainly in two failure forms: pulverization and spallation. The research results provide a theoretical basis and test data support for the prevention and control of coal and gas outburst disasters.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves