Self-Supervised Inference of Agents in Trustless Environments

Vladyslav Larin, Ivan Nikitin, Alexander Firsov
{"title":"Self-Supervised Inference of Agents in Trustless Environments","authors":"Vladyslav Larin, Ivan Nikitin, Alexander Firsov","doi":"arxiv-2409.08386","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel approach where agents can form swarms to\nproduce high-quality responses effectively. This is accomplished by utilizing\nagents capable of data inference and ranking, which can be effectively\nimplemented using LLMs as response classifiers. We assess existing approaches\nfor trustless agent inference, define our methodology, estimate practical\nparameters, and model various types of malicious agent attacks. Our method\nleverages the collective intelligence of swarms, ensuring robust and efficient\ndecentralized AI inference with better accuracy, security, and reliability. We\nshow that our approach is an order of magnitude faster than other trustless\ninference strategies reaching less than 125 ms validation latency.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel approach where agents can form swarms to produce high-quality responses effectively. This is accomplished by utilizing agents capable of data inference and ranking, which can be effectively implemented using LLMs as response classifiers. We assess existing approaches for trustless agent inference, define our methodology, estimate practical parameters, and model various types of malicious agent attacks. Our method leverages the collective intelligence of swarms, ensuring robust and efficient decentralized AI inference with better accuracy, security, and reliability. We show that our approach is an order of magnitude faster than other trustless inference strategies reaching less than 125 ms validation latency.
无信任环境中的代理自监督推理
在本文中,我们提出了一种新颖的方法,即代理可以组成蜂群,有效地生成高质量的响应。这是通过利用能够进行数据推理和排序的代理来实现的,这可以有效地使用 LLM 作为响应分类器来实现。我们评估了现有的无信任代理推理方法,定义了我们的方法,估算了实用参数,并对各种类型的恶意代理攻击进行了建模。我们的方法利用了蜂群的集体智慧,确保了稳健高效的去中心化人工智能推理,具有更高的准确性、安全性和可靠性。Wesh显示,我们的方法比其他无信任推理策略快一个数量级,验证延迟小于125毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信