On Golomb Topology of Modules over Commutative Rings

Uğur Yiğit, Suat Koç, Ünsal Tekir
{"title":"On Golomb Topology of Modules over Commutative Rings","authors":"Uğur Yiğit, Suat Koç, Ünsal Tekir","doi":"arxiv-2409.09807","DOIUrl":null,"url":null,"abstract":"In this paper, we associate a new topology to a nonzero unital module $M$\nover a commutative $R$, which is called Golomb topology of the $R$-module $M$.\nLet $M\\ $be an\\ $R$-module and $B_{M}$ be the family of coprime cosets\n$\\{m+N\\}$ where $m\\in M$ and $N\\ $is a nonzero submodule of $M\\ $such that\n$N+Rm=M$. We prove that if $M\\ $is a meet irreducible multiplication module or\n$M\\ $is a meet irreducible finitely generated module in which every maximal\nsubmodule is strongly irreducible, then $B_{M}\\ $is the basis for a topology on\n$M\\ $which is denoted by $\\widetilde{G(M)}.$ In particular, the subspace\ntopology on $M-\\{0\\}$ is called the Golomb topology of the $R$-module $M\\ $and\ndenoted by $G(M)$. We investigate the relations between topological properties\nof $G(M)\\ $and algebraic properties of $M.\\ $In particular, we characterize\nsome important classes of modules such as simple modules, Jacobson semisimple\nmodules in terms of Golomb topology.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we associate a new topology to a nonzero unital module $M$ over a commutative $R$, which is called Golomb topology of the $R$-module $M$. Let $M\ $be an\ $R$-module and $B_{M}$ be the family of coprime cosets $\{m+N\}$ where $m\in M$ and $N\ $is a nonzero submodule of $M\ $such that $N+Rm=M$. We prove that if $M\ $is a meet irreducible multiplication module or $M\ $is a meet irreducible finitely generated module in which every maximal submodule is strongly irreducible, then $B_{M}\ $is the basis for a topology on $M\ $which is denoted by $\widetilde{G(M)}.$ In particular, the subspace topology on $M-\{0\}$ is called the Golomb topology of the $R$-module $M\ $and denoted by $G(M)$. We investigate the relations between topological properties of $G(M)\ $and algebraic properties of $M.\ $In particular, we characterize some important classes of modules such as simple modules, Jacobson semisimple modules in terms of Golomb topology.
论交换环上模块的戈隆拓扑学
在本文中,我们将一种新的拓扑学关联到一个交换$R$上的非零单元模块$M$,它被称为$R$模块$M$的戈隆拓扑学。让$M/$是一个$R$模块,$B_{M}$是$M$的共轭余集${m+N/}$族,其中$m/$在M$中,$N/$是$M/$的一个非零子模块,使得$N+Rm=M$。我们证明,如果 $M\ $ 是一个满足不可还原的乘法模块,或者 $M\ $ 是一个满足不可还原的有限生成模块,其中每个最大子模块都是强不可还原的,那么 $B_{M}\ $ 就是 $M\ $ 上拓扑的基础,用 $\widetilde{G(M)} 表示。特别地,$M-\{0\}$上的子拓扑称为$R$模块$M\ $的戈隆拓扑,用$G(M)$表示。我们研究了$G(M)$的拓扑性质与$M.\$的代数性质之间的关系,特别是用戈隆拓扑描述了一些重要的模块类别,如简单模块、雅各布森半简单模块等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信