On Divisor Topology of Commutative Rings

Uğur Yiğit, Suat Koç
{"title":"On Divisor Topology of Commutative Rings","authors":"Uğur Yiğit, Suat Koç","doi":"arxiv-2409.10577","DOIUrl":null,"url":null,"abstract":"Let $R\\ $be an integral domain and $R^{\\#}$ the set of all nonzero nonunits\nof $R.\\ $For every elements $a,b\\in R^{\\#},$ we define $a\\sim b$ if and only if\n$aR=bR,$ that is, $a$ and $b$ are associated elements. Suppose that\n$EC(R^{\\#})$ is the set of all equivalence classes of $R^{\\#}\\ $according to\n$\\sim$.$\\ $Let $U_{a}=\\{[b]\\in EC(R^{\\#}):b\\ $divides $a\\}$ for every $a\\in\nR^{\\#}.$ Then we prove that the family $\\{U_{a}\\}_{a\\in R^{\\#}}$ becomes a\nbasis for a topology on $EC(R^{\\#}).\\ $This topology is called divisor topology\nof $R\\ $and denoted by $D(R).\\ $We investigate the connections between the\nalgebraic properties of $R\\ $and the topological properties of$\\ D(R)$. In\nparticular, we investigate the seperation axioms on $D(R)$, first and second\ncountability axioms, connectivity and compactness on $D(R)$. We prove that for\natomic domains $R,\\ $the divisor topology $D(R)\\ $is a Baire space. Also, we\ncharacterize valution domains $R$ in terms of nested property of $D(R).$ In the\nlast section, we introduce a new topological proof of the infinitude of prime\nelements in a UFD and integers by using the topology $D(R)$.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R\ $be an integral domain and $R^{\#}$ the set of all nonzero nonunits of $R.\ $For every elements $a,b\in R^{\#},$ we define $a\sim b$ if and only if $aR=bR,$ that is, $a$ and $b$ are associated elements. Suppose that $EC(R^{\#})$ is the set of all equivalence classes of $R^{\#}\ $according to $\sim$.$\ $Let $U_{a}=\{[b]\in EC(R^{\#}):b\ $divides $a\}$ for every $a\in R^{\#}.$ Then we prove that the family $\{U_{a}\}_{a\in R^{\#}}$ becomes a basis for a topology on $EC(R^{\#}).\ $This topology is called divisor topology of $R\ $and denoted by $D(R).\ $We investigate the connections between the algebraic properties of $R\ $and the topological properties of$\ D(R)$. In particular, we investigate the seperation axioms on $D(R)$, first and second countability axioms, connectivity and compactness on $D(R)$. We prove that for atomic domains $R,\ $the divisor topology $D(R)\ $is a Baire space. Also, we characterize valution domains $R$ in terms of nested property of $D(R).$ In the last section, we introduce a new topological proof of the infinitude of prime elements in a UFD and integers by using the topology $D(R)$.
论交换环的除子拓扑学
对于R^{/#}中的每个元素$a,b,$我们定义$a/sim b$,当且仅当$aR=bR,$即$a$和$b$是关联元素。假设$EC(R^{/#})$是$R^{/#}/$的所有等价类的集合,根据$a/sim$.$让$U_{a}=/{[b]\in EC(R^{\#}):b$divides $a\$ for every $a\inR^{\#}.然后我们证明${U_{a}\}_{a\in R^{\#}}$ 系列在$EC(R^{/\#})上的拓扑学中变得无足轻重。\ $We research the connections between thealgebraic properties of $R\$ and the topological properties of $D(R)$.特别是,我们研究了$D(R)$上的分离公理、第一可数公理和第二可数公理、连通性和紧凑性。我们证明,对于原子域 $R,\$,除数拓扑 $D(R)\$ 是一个拜尔空间。在最后一节中,我们利用拓扑 $D(R)$ 介绍了 UFD 和整数中原元无穷大的新拓扑证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信