{"title":"Hydrogen bonding in 2,2,2-trifluoroethanol","authors":"Soon Ng, Yaoming Xie, Henry F. Schaefer III","doi":"10.1007/s00894-024-06135-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>2,2,2-Trifluoroethanol (TFE) is known as a membrane mimetic solvent. The IR spectrum, <sup>1</sup>H NMR spectrum, <sup>13</sup>C NMR spin‒lattice relaxation times (T<sub>1</sub>), and nuclear Overhauser effect (NOE) data are consistent with extensive hydrogen bonding in TFE, but do not lead to structural features of the hydrogen bonding. Hence, DFT computations were carried out. The results predict the existence of a set of H-bonded dimers and trimers. The bond lengths and dihedral angles in these complexes are obtained, together with their dissociation energies. Computations were also performed for the geometry of the two conformers of the isolated monomer. The structure of one of the dimers consists of a 7-member cyclic fragment with a free CF<sub>3</sub>CH<sub>2</sub> side chain. One set of the trimer structures involves the OH of a third monomer H-bonding to one of the F atoms in the CF<sub>3</sub> group of the side chain of this dimer, thereby creating three trimer isomers. A fourth trimer cluster is formed from three monomers in which three OH∙∙∙O bonds create a cyclic fragment with three CF<sub>3</sub>CH<sub>2</sub> side chains. The high dissociation energy (with respect to three monomers) indicates the high stability of the trimer complexes. The structural features of the trimer complexes resemble the structure of a conventional liquid crystal molecule and are postulated to resemble the latter in properties and function in solution, but at <i>a much shorter timescale</i> because of the noncovalent bonding. This hydrogen bonding phenomenon of TFE may be related to its function as a membrane memetic solvent.</p><h3>Methods</h3><p>Initially, IR and NMR spectroscopic methods were used. Standard procedures were followed. For the computations, a hybrid DFT method with empirical dispersion, ωB97X-D, was used. The basis set, 6-311++G**, is of triple-ζ quality, in which polarization functions and diffuse functions were added for all atoms.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-06135-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
2,2,2-Trifluoroethanol (TFE) is known as a membrane mimetic solvent. The IR spectrum, 1H NMR spectrum, 13C NMR spin‒lattice relaxation times (T1), and nuclear Overhauser effect (NOE) data are consistent with extensive hydrogen bonding in TFE, but do not lead to structural features of the hydrogen bonding. Hence, DFT computations were carried out. The results predict the existence of a set of H-bonded dimers and trimers. The bond lengths and dihedral angles in these complexes are obtained, together with their dissociation energies. Computations were also performed for the geometry of the two conformers of the isolated monomer. The structure of one of the dimers consists of a 7-member cyclic fragment with a free CF3CH2 side chain. One set of the trimer structures involves the OH of a third monomer H-bonding to one of the F atoms in the CF3 group of the side chain of this dimer, thereby creating three trimer isomers. A fourth trimer cluster is formed from three monomers in which three OH∙∙∙O bonds create a cyclic fragment with three CF3CH2 side chains. The high dissociation energy (with respect to three monomers) indicates the high stability of the trimer complexes. The structural features of the trimer complexes resemble the structure of a conventional liquid crystal molecule and are postulated to resemble the latter in properties and function in solution, but at a much shorter timescale because of the noncovalent bonding. This hydrogen bonding phenomenon of TFE may be related to its function as a membrane memetic solvent.
Methods
Initially, IR and NMR spectroscopic methods were used. Standard procedures were followed. For the computations, a hybrid DFT method with empirical dispersion, ωB97X-D, was used. The basis set, 6-311++G**, is of triple-ζ quality, in which polarization functions and diffuse functions were added for all atoms.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.