D. Uma, H. Jafari, S. Raja Balachandar, S. G. Venkatesh, S. Vaidyanathan
{"title":"An approximate solution for stochastic Fitzhugh–Nagumo partial differential equations arising in neurobiology models","authors":"D. Uma, H. Jafari, S. Raja Balachandar, S. G. Venkatesh, S. Vaidyanathan","doi":"10.1002/mma.10471","DOIUrl":null,"url":null,"abstract":"In this paper, approximate solutions for stochastic Fitzhugh–Nagumo partial differential equations are obtained using two‐dimensional shifted Legendre polynomial (2DSLP) approximation. The problem's suitability and solvability are confirmed. The convergence analysis for the proposed methodology and the error analysis in the norm are carried out. Using Maple software, an algorithm is created and implemented to arrive at the numerical solution. The solution thus obtained is compared with the exact solution and the solution obtained using the explicit order RK1.5 method.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, approximate solutions for stochastic Fitzhugh–Nagumo partial differential equations are obtained using two‐dimensional shifted Legendre polynomial (2DSLP) approximation. The problem's suitability and solvability are confirmed. The convergence analysis for the proposed methodology and the error analysis in the norm are carried out. Using Maple software, an algorithm is created and implemented to arrive at the numerical solution. The solution thus obtained is compared with the exact solution and the solution obtained using the explicit order RK1.5 method.