{"title":"Total free-free Gaunt factors prediction using machine learning models","authors":"D. E. Zenkhri, A. Benkrane and M. T. Meftah","doi":"10.1209/0295-5075/ad73fe","DOIUrl":null,"url":null,"abstract":"Gaunt factors are fundamental in describing the interaction of free electrons with photons, playing a crucial role in astrophysical processes such as radiation transport and emission spectra. Traditional methods for computing Gaunt factors involve complex integrations and intricate mathematical formulations, often being computationally expensive and time-consuming. This study explores an alternative approach using machine learning models to predict free-free Gaunt factors. Three models were employed: Artificial Neural Network (ANN), Support Vector Regression (SVR), and Gradient Boosting Regression (GBR). The obtained results demonstrate high performance, with R2 scores ranging from 0.98 to 0.99, indicating the potential of machine learning models to accurately predict Gaunt factors.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"52 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad73fe","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gaunt factors are fundamental in describing the interaction of free electrons with photons, playing a crucial role in astrophysical processes such as radiation transport and emission spectra. Traditional methods for computing Gaunt factors involve complex integrations and intricate mathematical formulations, often being computationally expensive and time-consuming. This study explores an alternative approach using machine learning models to predict free-free Gaunt factors. Three models were employed: Artificial Neural Network (ANN), Support Vector Regression (SVR), and Gradient Boosting Regression (GBR). The obtained results demonstrate high performance, with R2 scores ranging from 0.98 to 0.99, indicating the potential of machine learning models to accurately predict Gaunt factors.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.