{"title":"Uniform exponential stability approximations of semi‐discretization schemes for two hybrid systems","authors":"Lu Zhang, Fu Zheng, Sizhe Wang, Zhongjie Han","doi":"10.1002/mma.10484","DOIUrl":null,"url":null,"abstract":"The uniform exponential stabilities (UESs) of two hybrid control systems comprised of a wave equation and a second‐order ordinary differential equation are investigated in this study. Linear feedback law and local viscosity are considered, as are nonlinear feedback law and internal anti‐damping. The hybrid system is first reduced to a first‐order port‐Hamiltonian system with dynamical boundary conditions, and the resulting system is discretized using the average central‐difference scheme. Second, the UES of the discrete system is obtained without prior knowledge of the exponential stability of the continuous system. The frequency domain characterization of UES for a family of contractive semigroups and the discrete multiplier approach are used to validate the main conclusions. Finally, the Trotter–Kato theorem is used to perform a convergence study on the numerical approximation approach. Most notably, the exponential stability of the continuous system is derived by the convergence of energy and UES, which is a novel approach to studying the exponential stability of some complex systems. Numerical simulation is used to validate the effectiveness of the numerical approximating strategy.","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"15 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10484","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The uniform exponential stabilities (UESs) of two hybrid control systems comprised of a wave equation and a second‐order ordinary differential equation are investigated in this study. Linear feedback law and local viscosity are considered, as are nonlinear feedback law and internal anti‐damping. The hybrid system is first reduced to a first‐order port‐Hamiltonian system with dynamical boundary conditions, and the resulting system is discretized using the average central‐difference scheme. Second, the UES of the discrete system is obtained without prior knowledge of the exponential stability of the continuous system. The frequency domain characterization of UES for a family of contractive semigroups and the discrete multiplier approach are used to validate the main conclusions. Finally, the Trotter–Kato theorem is used to perform a convergence study on the numerical approximation approach. Most notably, the exponential stability of the continuous system is derived by the convergence of energy and UES, which is a novel approach to studying the exponential stability of some complex systems. Numerical simulation is used to validate the effectiveness of the numerical approximating strategy.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.