A new representation for the solution of the Richards‐type fractional differential equation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Iz‐iddine EL‐Fassi, Juan J. Nieto, Masakazu Onitsuka
{"title":"A new representation for the solution of the Richards‐type fractional differential equation","authors":"Iz‐iddine EL‐Fassi, Juan J. Nieto, Masakazu Onitsuka","doi":"10.1002/mma.10394","DOIUrl":null,"url":null,"abstract":"Richards in [35] proposed a modification of the logistic model to model growth of biological populations. In this paper, we give a new representation (or characterization) of the solution to the Richards‐type fractional differential equation for , where is a continuously differentiable function on and is a positive real constant. The obtained representation of the solution can be used effectively for computational and analytic purposes. This study improves and generalizes the results obtained on fractional logistic ordinary differential equation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Richards in [35] proposed a modification of the logistic model to model growth of biological populations. In this paper, we give a new representation (or characterization) of the solution to the Richards‐type fractional differential equation for , where is a continuously differentiable function on and is a positive real constant. The obtained representation of the solution can be used effectively for computational and analytic purposes. This study improves and generalizes the results obtained on fractional logistic ordinary differential equation.
理查兹型分数微分方程解法的新表示法
理查兹在文献[35]中提出了对逻辑模型的修改,以模拟生物种群的增长。在本文中,我们给出了理查兹型分式微分方程解的新表示(或表征),其中 , 为连续可微分函数, 为正实数常数。所获得的解的表示可以有效地用于计算和分析目的。这项研究改进并推广了分式逻辑常微分方程的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信