{"title":"Similarity and consimilarity of hyper‐dual generalized quaternions","authors":"Yasemin Alagöz, Gözde Özyurt","doi":"10.1002/mma.10488","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate similarity and consimilarity of hyper‐dual generalized quaternions and their matrices. For this purpose, we give different conjugates according to the generalized quaternionic units . We present ‐consimilarity of hyper‐dual generalized quaternions and their matrices except hyper‐dual ‐quaternions. For the generalization consisting of hyper‐dual coefficients quaternion and split quaternion, we search ‐consimilarity and ‐consimilarity with the help of ‐conjugate and ‐conjugate. We also give ‐coneigenvalues and ‐coneigenvectors of the matrices of these generalizations. In addition, we examine right coneigenvalue problem in generalized quaternion matrices for real and split quaternions. The complex matrix representation obtained through the complex adjoint matrix representation of this generalization is introduced, and its properties are presented. Besides, we give algebraic methods for the concept of right coneigenvalues and coneigenvectors for matrices, which are the generalization of real quaternion and split quaternion.","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":"81 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mma.10488","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to investigate similarity and consimilarity of hyper‐dual generalized quaternions and their matrices. For this purpose, we give different conjugates according to the generalized quaternionic units . We present ‐consimilarity of hyper‐dual generalized quaternions and their matrices except hyper‐dual ‐quaternions. For the generalization consisting of hyper‐dual coefficients quaternion and split quaternion, we search ‐consimilarity and ‐consimilarity with the help of ‐conjugate and ‐conjugate. We also give ‐coneigenvalues and ‐coneigenvectors of the matrices of these generalizations. In addition, we examine right coneigenvalue problem in generalized quaternion matrices for real and split quaternions. The complex matrix representation obtained through the complex adjoint matrix representation of this generalization is introduced, and its properties are presented. Besides, we give algebraic methods for the concept of right coneigenvalues and coneigenvectors for matrices, which are the generalization of real quaternion and split quaternion.
期刊介绍:
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.
Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.
Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.