Integrating Experiment with Theory to Determine the Structure of Electrode-Electrolyte Interfaces

Lalith Krishna Samanth Bonagiri, Amir Farokh Payam, Narayana R. Aluru, Yingjie Zhang
{"title":"Integrating Experiment with Theory to Determine the Structure of Electrode-Electrolyte Interfaces","authors":"Lalith Krishna Samanth Bonagiri, Amir Farokh Payam, Narayana R. Aluru, Yingjie Zhang","doi":"arxiv-2409.10008","DOIUrl":null,"url":null,"abstract":"Electrode-electrolyte interfaces are crucial for electrochemical energy\nconversion and storage. At these interfaces, the liquid electrolytes form\nelectrical double layers (EDLs). However, despite more than a century of active\nresearch, the fundamental structure of EDLs remains elusive to date.\nExperimental characterization and theoretical calculations have both provided\ninsights, yet each method by itself only offers incomplete or inexact\ninformation of the multifaceted EDL structure. Here we provide a survey of the\nmainstream approaches for EDL quantification, with a particular focus on the\nemerging 3D atomic force microscopy (3D-AFM) imaging which provides real-space\natomic-scale EDL structures. To overcome the existing limits of EDL\ncharacterization methods, we propose a new approach to integrate 3D-AFM with\nclassical molecular dynamics (MD) simulation, to enable realistic, precise, and\nhigh-throughput determination and prediction of EDL structures. As examples of\nreal-world application, we will discuss the feasibility of using this joint\nexperiment-theory method to unravel the EDL structure at various carbon-based\nelectrodes for supercapacitors, batteries, and electrocatalysis. Looking\nforward, we believe 3D-AFM, future versions of scanning probe microscopy, and\ntheir integration with theory offer promising platforms to profile liquid\nstructures in many electrochemical systems.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrode-electrolyte interfaces are crucial for electrochemical energy conversion and storage. At these interfaces, the liquid electrolytes form electrical double layers (EDLs). However, despite more than a century of active research, the fundamental structure of EDLs remains elusive to date. Experimental characterization and theoretical calculations have both provided insights, yet each method by itself only offers incomplete or inexact information of the multifaceted EDL structure. Here we provide a survey of the mainstream approaches for EDL quantification, with a particular focus on the emerging 3D atomic force microscopy (3D-AFM) imaging which provides real-space atomic-scale EDL structures. To overcome the existing limits of EDL characterization methods, we propose a new approach to integrate 3D-AFM with classical molecular dynamics (MD) simulation, to enable realistic, precise, and high-throughput determination and prediction of EDL structures. As examples of real-world application, we will discuss the feasibility of using this joint experiment-theory method to unravel the EDL structure at various carbon-based electrodes for supercapacitors, batteries, and electrocatalysis. Looking forward, we believe 3D-AFM, future versions of scanning probe microscopy, and their integration with theory offer promising platforms to profile liquid structures in many electrochemical systems.
将实验与理论相结合,确定电极-电解质界面的结构
电极-电解质界面对于电化学能量转换和储存至关重要。在这些界面上,液态电解质形成了电双层(EDL)。然而,尽管经过一个多世纪的积极研究,迄今为止,EDL 的基本结构仍然难以捉摸。实验表征和理论计算都提供了一些见解,但每种方法本身只能提供不完整或不精确的信息,说明 EDL 结构的多面性。在此,我们对 EDL 定量的主流方法进行了调查,并特别关注正在兴起的三维原子力显微镜(3D-AFM)成像技术,该技术可提供真实空间原子尺度的 EDL 结构。为了克服现有 EDL 表征方法的局限性,我们提出了一种将 3D-AFM 与经典分子动力学(MD)模拟相结合的新方法,以实现 EDL 结构的真实、精确和高通量测定与预测。作为现实世界的应用实例,我们将讨论使用这种实验-理论联合方法揭示超级电容器、电池和电催化用各种碳基电极的 EDL 结构的可行性。展望未来,我们相信三维原子力显微镜、未来版本的扫描探针显微镜以及它们与理论的结合为剖析许多电化学系统中的液体结构提供了前景广阔的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信