Developing Orbital-Dependent Corrections for the Non-Additive Kinetic Energy in Subsystem Density Functional Theory

Larissa Sophie Eitelhuber, Denis G. Artiukhin
{"title":"Developing Orbital-Dependent Corrections for the Non-Additive Kinetic Energy in Subsystem Density Functional Theory","authors":"Larissa Sophie Eitelhuber, Denis G. Artiukhin","doi":"arxiv-2409.11914","DOIUrl":null,"url":null,"abstract":"We present a novel route to constructing cost-efficient semi-empirical\napproximations for the non-additive kinetic energy in subsystem density\nfunctional theory. The developed methodology is based on the use of Slater\ndeterminants composed of non-orthogonal Kohn$\\unicode{x2013}$Sham-like orbitals\nfor the evaluation of kinetic energy expectation values and the expansion of\nthe inverse molecular-orbital overlap matrix into a Neumann series. Applying\nthese techniques, we derived and implemented a series of orbital-dependent\napproximations for the non-additive kinetic energy, which are employed\nself-consistently. Our proof-of-principle computations demonstrated\nquantitatively correct results for potential energy curves and electron\ndensities and hinted on the applicability of the introduced empirical\nparameters to different types of molecular systems and intermolecular\ninteractions. We therefore conclude that the presented study is an important\nstep towards constructing accurate and efficient orbital-dependent\napproximations for the non-additive kinetic energy applicable to large\nmolecular systems.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel route to constructing cost-efficient semi-empirical approximations for the non-additive kinetic energy in subsystem density functional theory. The developed methodology is based on the use of Slater determinants composed of non-orthogonal Kohn$\unicode{x2013}$Sham-like orbitals for the evaluation of kinetic energy expectation values and the expansion of the inverse molecular-orbital overlap matrix into a Neumann series. Applying these techniques, we derived and implemented a series of orbital-dependent approximations for the non-additive kinetic energy, which are employed self-consistently. Our proof-of-principle computations demonstrated quantitatively correct results for potential energy curves and electron densities and hinted on the applicability of the introduced empirical parameters to different types of molecular systems and intermolecular interactions. We therefore conclude that the presented study is an important step towards constructing accurate and efficient orbital-dependent approximations for the non-additive kinetic energy applicable to large molecular systems.
在子系统密度泛函理论中开发轨道相关的非附加动能校正器
我们提出了一条在子系统密度函数理论中构建具有成本效益的非加成动能半经验近似值的新途径。所开发的方法基于使用由非正交 Kohn$unicode{x2013}$Sham 类轨道组成的 Slaterdeterminants 来评估动能期望值,并将分子轨道重叠矩阵的逆向扩展为诺伊曼数列。应用这些技术,我们推导并实现了一系列与轨道相关的非相加动能近似值,这些近似值可以自洽地使用。我们的原理验证计算证明了势能曲线和电荷量的定量结果是正确的,并暗示了引入的经验参数适用于不同类型的分子体系和分子间相互作用。因此,我们得出结论,本研究是朝着构建适用于大分子体系的准确、高效的非相加动能轨道近似值迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信