A close pair of orbiters embedded in a gaseous disk: the repulsive effect

F. J. Sanchez-Salcedo, F. S. Masset, S. Cornejo
{"title":"A close pair of orbiters embedded in a gaseous disk: the repulsive effect","authors":"F. J. Sanchez-Salcedo, F. S. Masset, S. Cornejo","doi":"arxiv-2409.10751","DOIUrl":null,"url":null,"abstract":"We develop a theoretical framework and use two-dimensional hydrodynamical\nsimulations to study the repulsive effect between two close orbiters embedded\nin an accretion disk. We consider orbiters on fixed Keplerian orbits with\nmasses low enough to open shallow gaps. The simulations indicate that the\nrepulsion is larger for more massive orbiters and decreases with the orbital\nseparation and the disk's viscosity. We use two different assumptions to derive\ntheoretical scaling relations for the repulsion. A first scenario assumes that\neach orbiter absorbs the angular momentum deposited in its horseshoe region by\nthe companion's wake. A second scenario assumes that the corotation torques of\nthe orbiters are modified because the companion changes the underlying radial\ngradient of the disk surface density. We find a substantial difference between\nthe predictions of these two scenarios. The first one fails to reproduce the\nscaling of the repulsion with the disk viscosity and generally overestimates\nthe strength of the repulsion. The second scenario, however, gives results that\nare broadly consistent with those obtained in the simulations.","PeriodicalId":501068,"journal":{"name":"arXiv - PHYS - Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a theoretical framework and use two-dimensional hydrodynamical simulations to study the repulsive effect between two close orbiters embedded in an accretion disk. We consider orbiters on fixed Keplerian orbits with masses low enough to open shallow gaps. The simulations indicate that the repulsion is larger for more massive orbiters and decreases with the orbital separation and the disk's viscosity. We use two different assumptions to derive theoretical scaling relations for the repulsion. A first scenario assumes that each orbiter absorbs the angular momentum deposited in its horseshoe region by the companion's wake. A second scenario assumes that the corotation torques of the orbiters are modified because the companion changes the underlying radial gradient of the disk surface density. We find a substantial difference between the predictions of these two scenarios. The first one fails to reproduce the scaling of the repulsion with the disk viscosity and generally overestimates the strength of the repulsion. The second scenario, however, gives results that are broadly consistent with those obtained in the simulations.
嵌入气态圆盘的一对近距离轨道器:排斥效应
我们建立了一个理论框架,并使用二维流体力学模拟来研究嵌入吸积盘的两个近轨道器之间的排斥效应。我们考虑了开普勒固定轨道上的轨道器,其质量低到足以打开浅间隙。模拟结果表明,质量越大的轨道器斥力越大,并且随着轨道间隔和磁盘粘度的增大而减小。我们使用两种不同的假设来推导斥力的理论比例关系。第一种假设是每个轨道器吸收伴星尾流沉积在其马蹄形区域的角动量。第二种假设是,由于伴星改变了磁盘表面密度的基本径向梯度,轨道器的旋转力矩发生了变化。我们发现这两种方案的预测结果存在很大差异。第一种方案无法再现斥力与磁盘粘度的比例关系,而且普遍高估了斥力的强度。然而,第二种情况得出的结果与模拟结果基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信