Inferring stellar parameters and their uncertainties from high-resolution spectroscopy using invertible neural networks

Nils Candebat, Giuseppe Germano Sacco, Laura Magrini, Francesco Belfiore, Mathieu Van-der-Swaelmen, Stefano Zibetti
{"title":"Inferring stellar parameters and their uncertainties from high-resolution spectroscopy using invertible neural networks","authors":"Nils Candebat, Giuseppe Germano Sacco, Laura Magrini, Francesco Belfiore, Mathieu Van-der-Swaelmen, Stefano Zibetti","doi":"arxiv-2409.10621","DOIUrl":null,"url":null,"abstract":"Context: New spectroscopic surveys will increase the number of astronomical\nobjects requiring characterization by over tenfold.. Machine learning tools are\nrequired to address this data deluge in a fast and accurate fashion. Most\nmachine learning algorithms can not estimate error directly, making them\nunsuitable for reliable science. Aims: We aim to train a supervised deep-learning algorithm tailored for\nhigh-resolution observational stellar spectra. This algorithm accurately infer\nprecise estimates while providing coherent estimates of uncertainties by\nleveraging information from both the neural network and the spectra. Methods: We train a conditional Invertible Neural Network (cINN) on\nobservational spectroscopic data obtained from the GIRAFFE spectrograph (HR10\nand HR21 setups) within the Gaia-ESO survey. A key features of cINN is its\nability to produce the Bayesian posterior distribution of parameters for each\nspectrum. By analyzing this distribution, we inferred parameters and their\nuncertainties. Several tests have been applied to study how parameters and\nerrors are estimated. Results: We achieved an accuracy of 28K in $T_{\\text{eff}}$, 0.06 dex in\n$\\log g$, 0.03 dex in $[\\text{Fe/H}]$, and between 0.05 dex and 0.17 dex for\nthe other abundances for high quality spectra. Accuracy remains stable with low\nsignal-to-noise ratio spectra. The uncertainties obtained are well within the\nsame order of magnitude. The network accurately reproduces astrophysical\nrelationships both on the scale of the Milky Way and within smaller star\nclusters. We created a table containing the new parameters generated by our\ncINN. Conclusion: This neural network represents a compelling proposition for\nfuture astronomical surveys. These coherent derived uncertainties make it\npossible to reuse these estimates in other works as Bayesian priors and thus\npresent a solid basis for future work.","PeriodicalId":501068,"journal":{"name":"arXiv - PHYS - Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Context: New spectroscopic surveys will increase the number of astronomical objects requiring characterization by over tenfold.. Machine learning tools are required to address this data deluge in a fast and accurate fashion. Most machine learning algorithms can not estimate error directly, making them unsuitable for reliable science. Aims: We aim to train a supervised deep-learning algorithm tailored for high-resolution observational stellar spectra. This algorithm accurately infer precise estimates while providing coherent estimates of uncertainties by leveraging information from both the neural network and the spectra. Methods: We train a conditional Invertible Neural Network (cINN) on observational spectroscopic data obtained from the GIRAFFE spectrograph (HR10 and HR21 setups) within the Gaia-ESO survey. A key features of cINN is its ability to produce the Bayesian posterior distribution of parameters for each spectrum. By analyzing this distribution, we inferred parameters and their uncertainties. Several tests have been applied to study how parameters and errors are estimated. Results: We achieved an accuracy of 28K in $T_{\text{eff}}$, 0.06 dex in $\log g$, 0.03 dex in $[\text{Fe/H}]$, and between 0.05 dex and 0.17 dex for the other abundances for high quality spectra. Accuracy remains stable with low signal-to-noise ratio spectra. The uncertainties obtained are well within the same order of magnitude. The network accurately reproduces astrophysical relationships both on the scale of the Milky Way and within smaller star clusters. We created a table containing the new parameters generated by our cINN. Conclusion: This neural network represents a compelling proposition for future astronomical surveys. These coherent derived uncertainties make it possible to reuse these estimates in other works as Bayesian priors and thus present a solid basis for future work.
利用可逆神经网络从高分辨率光谱推断恒星参数及其不确定性
背景新的光谱巡天将使需要表征的天体数量增加十倍以上。要快速、准确地处理这一数据洪流,就需要机器学习工具。大多数机器学习算法不能直接估计误差,因此不适合用于可靠的科学研究。目的:我们旨在训练一种为高分辨率观测恒星光谱量身定制的有监督深度学习算法。这种算法可以准确推断出精确的估计值,同时通过利用神经网络和光谱的信息,提供不确定性的一致估计值。方法:我们在盖亚-ESO巡天中通过GIRAFFE光谱仪(HR10和HR21设置)获得的观测光谱数据上训练条件可逆神经网络(cINN)。cINN 的一个主要特点是它能够生成每条光谱参数的贝叶斯后验分布。通过分析这一分布,我们推断出了参数及其不确定性。为了研究参数和误差是如何估算出来的,我们应用了几种测试方法。结果:对于高质量的光谱,我们在$T_{text{eff}}$、$log g$、$[text{Fe/H}]$和其他丰度方面的精度分别达到了28K、0.06dex和0.03dex,在0.05dex和0.17dex之间。低信噪比光谱的精度保持稳定。获得的不确定性也在同一数量级内。该网络准确地再现了银河系和较小星团内的天体物理关系。我们创建了一个表格,其中包含了由我们的 CNN 生成的新参数。结论这个神经网络为未来的天文观测提供了令人信服的建议。这些连贯推导出的不确定性使我们有可能将这些估计值作为贝叶斯先验值在其他工作中重复使用,从而为未来的工作奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信