orbitize! v3: Orbit fitting for the High-contrast Imaging Community

Sarah Blunt, Jason Jinfei Wang, Vighnesh Nagpal, Lea Hirsch, Roberto Tejada, Tirth Dharmesh Surti, Sofia Covarrubias, Thea McKenna, Rodrigo Ferrer Chávez, Jorge Llop-Sayson, Mireya Arora, Amanda Chavez, Devin Cody, Saanika Choudhary, Adam Smith, William Balmer, Tomas Stolker, Hannah Gallamore, Clarissa R. Do Ó, Eric L. Nielsen, Robert J. De Rosa
{"title":"orbitize! v3: Orbit fitting for the High-contrast Imaging Community","authors":"Sarah Blunt, Jason Jinfei Wang, Vighnesh Nagpal, Lea Hirsch, Roberto Tejada, Tirth Dharmesh Surti, Sofia Covarrubias, Thea McKenna, Rodrigo Ferrer Chávez, Jorge Llop-Sayson, Mireya Arora, Amanda Chavez, Devin Cody, Saanika Choudhary, Adam Smith, William Balmer, Tomas Stolker, Hannah Gallamore, Clarissa R. Do Ó, Eric L. Nielsen, Robert J. De Rosa","doi":"arxiv-2409.11573","DOIUrl":null,"url":null,"abstract":"orbitize! is a package for Bayesian modeling of the orbital parameters of\nresolved binary objects from time series measurements. It was developed with\nthe needs of the high-contrast imaging community in mind, and has since also\nbecome widely used in the binary star community. A generic orbitize! use case\ninvolves translating relative astrometric time series, optionally combined with\nradial velocity or astrometric time series, into a set of derived orbital\nposteriors. This paper is published alongside the release of orbitize! version\n3.0, which has seen significant enhancements in functionality and accessibility\nsince the release of version 1.0 (Blunt et al., 2020).","PeriodicalId":501068,"journal":{"name":"arXiv - PHYS - Solar and Stellar Astrophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

orbitize! is a package for Bayesian modeling of the orbital parameters of resolved binary objects from time series measurements. It was developed with the needs of the high-contrast imaging community in mind, and has since also become widely used in the binary star community. A generic orbitize! use case involves translating relative astrometric time series, optionally combined with radial velocity or astrometric time series, into a set of derived orbital posteriors. This paper is published alongside the release of orbitize! version 3.0, which has seen significant enhancements in functionality and accessibility since the release of version 1.0 (Blunt et al., 2020).
orbitize! v3:高对比度成像社区的轨道拟合
orbitize! 是一个根据时间序列测量结果对已解析双星的轨道参数进行贝叶斯建模的软件包。它是根据高对比度成像领域的需求开发的,后来也在双星领域得到了广泛应用。一般的 orbitize! 用例包括将相对天体测量时间序列(可选择与径向速度或天体测量时间序列相结合)转化为一组推导出的轨道后向。本文与orbitize!3.0版同时发表,该版本自1.0版(Blunt等人,2020年)发布以来,在功能性和可访问性方面都有显著增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信