{"title":"On questions of uniqueness for the vacant set of Wiener sausages and Brownian interlacements","authors":"Yingxin Mu, Artem Sapozhnikov","doi":"10.1007/s00440-024-01315-y","DOIUrl":null,"url":null,"abstract":"<p>We consider connectivity properties of the vacant set of (random) ensembles of Wiener sausages in <span>\\({\\mathbb {R}}^d\\)</span> in the transient dimensions <span>\\(d \\ge 3\\)</span>. We prove that the vacant set of Brownian interlacements contains at most one infinite connected component almost surely. For finite ensembles of Wiener sausages, we provide sharp polynomial bounds on the probability that their vacant set contains at least 2 connected components in microscopic balls. The main proof ingredient is a sharp polynomial bound on the probability that several Brownian motions visit jointly all hemiballs of the unit ball while avoiding a slightly smaller ball.\n</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"10 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01315-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider connectivity properties of the vacant set of (random) ensembles of Wiener sausages in \({\mathbb {R}}^d\) in the transient dimensions \(d \ge 3\). We prove that the vacant set of Brownian interlacements contains at most one infinite connected component almost surely. For finite ensembles of Wiener sausages, we provide sharp polynomial bounds on the probability that their vacant set contains at least 2 connected components in microscopic balls. The main proof ingredient is a sharp polynomial bound on the probability that several Brownian motions visit jointly all hemiballs of the unit ball while avoiding a slightly smaller ball.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.