Lateral stress induced blistering of tungsten exposed to deuterium plasma

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Zhenyu Jiang, Tongjun Xia, Wenjia Han, Yongzhi Shi, Wenjie Zhang and Kaigui Zhu
{"title":"Lateral stress induced blistering of tungsten exposed to deuterium plasma","authors":"Zhenyu Jiang, Tongjun Xia, Wenjia Han, Yongzhi Shi, Wenjie Zhang and Kaigui Zhu","doi":"10.1088/1402-4896/ad75ce","DOIUrl":null,"url":null,"abstract":"Surface blistering on tungsten under deuterium plasma exposure has been well known and investigated intensively in the last decade. However, the mechanism of the blistering is still unclear. There have been mainly two different models proposed: the gas driven model and lateral stress model. In this work, we designed an experiment to address this issue. Tungsten disc samples were prepared using twin-jet electro-polishing. The specimens were under deuterium plasma exposure to study the thickness effect on the surface blistering. The results showed that blistering was rarely observed on the surface around the inner edge of the central perforation with thickness of ∼100–500 nm. The blisters started to appear on the surface when the thickness was about 10 μm. Both the number and size of the blisters increased further on the outer surface with further increase in thickness. This trend was not obvious as the thickness increased up to above 180 μm. The diffusion depth of D in this work was calculated to be 8.5 μm. These results affirmed the lateral stress model as the surface blistering mechanism.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad75ce","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Surface blistering on tungsten under deuterium plasma exposure has been well known and investigated intensively in the last decade. However, the mechanism of the blistering is still unclear. There have been mainly two different models proposed: the gas driven model and lateral stress model. In this work, we designed an experiment to address this issue. Tungsten disc samples were prepared using twin-jet electro-polishing. The specimens were under deuterium plasma exposure to study the thickness effect on the surface blistering. The results showed that blistering was rarely observed on the surface around the inner edge of the central perforation with thickness of ∼100–500 nm. The blisters started to appear on the surface when the thickness was about 10 μm. Both the number and size of the blisters increased further on the outer surface with further increase in thickness. This trend was not obvious as the thickness increased up to above 180 μm. The diffusion depth of D in this work was calculated to be 8.5 μm. These results affirmed the lateral stress model as the surface blistering mechanism.
暴露于氘等离子体中的钨在横向应力作用下产生的水泡
在氘等离子体照射下,钨的表面起泡已广为人知,过去十年间对其进行了深入研究。然而,起泡的机理仍不清楚。目前主要有两种不同的模型:气体驱动模型和横向应力模型。在这项工作中,我们设计了一个实验来解决这个问题。我们使用双喷射电抛光技术制备了钨盘样品。将试样置于氘等离子体暴露下,研究厚度对表面起泡的影响。结果表明,在厚度为 100 至 500 nm 的中央穿孔内缘周围,很少观察到表面起泡。当厚度约为 10 μm 时,表面开始出现水泡。随着厚度的进一步增加,外表面水泡的数量和大小也进一步增加。当厚度增加到 180 μm 以上时,这种趋势就不明显了。经计算,D 的扩散深度为 8.5 μm。这些结果证实了横向应力模型是表面起泡的机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica Scripta
Physica Scripta 物理-物理:综合
CiteScore
3.70
自引率
3.40%
发文量
782
审稿时长
4.5 months
期刊介绍: Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed: -Atomic, molecular and optical physics- Plasma physics- Condensed matter physics- Mathematical physics- Astrophysics- High energy physics- Nuclear physics- Nonlinear physics. The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信