Jaya Joshi, Rajeev, J F Gómez-Aguilar and J E Lavín-Delgado
{"title":"A front-fixing numerical method for a fluvio-deltaic sedimentation process with thespace fractional derivative and variable sediment flux","authors":"Jaya Joshi, Rajeev, J F Gómez-Aguilar and J E Lavín-Delgado","doi":"10.1088/1402-4896/ad78c6","DOIUrl":null,"url":null,"abstract":"This paper centers around a space-fractional mathematical model for a fluvio-deltaic sedimentation process which involves a space-fractional derivative (Caputo derivative) and time dependent variable sediment flux to investigates the movement of shoreline in a sedimentary ocean basin. This model is a specific case of a basic shoreline model and analogous to a Stefan problem. The numerical solution to the problem is acquired by employing a front-fixing explicit finite difference method. The consistency, stability and convergence of the numerical scheme are theoretically analyzed. The effects of variable sediment flux on the movement of shoreline position and the height of sediments are also assessed for different cases.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"31 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad78c6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper centers around a space-fractional mathematical model for a fluvio-deltaic sedimentation process which involves a space-fractional derivative (Caputo derivative) and time dependent variable sediment flux to investigates the movement of shoreline in a sedimentary ocean basin. This model is a specific case of a basic shoreline model and analogous to a Stefan problem. The numerical solution to the problem is acquired by employing a front-fixing explicit finite difference method. The consistency, stability and convergence of the numerical scheme are theoretically analyzed. The effects of variable sediment flux on the movement of shoreline position and the height of sediments are also assessed for different cases.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.