{"title":"Click metamaterials: Fast acquisition of thermal conductivity and functionality diversities","authors":"Chengmeng Wang, Peng Jin, Fubao Yang, Pengfei Zhuang, Liujun Xu, Jiping Huang","doi":"10.1016/j.apmt.2024.102431","DOIUrl":null,"url":null,"abstract":"In material science, the development of metamaterials is crucial for advancing various technological applications. However, most metamaterial designs are still case by case due to lacking a fundamental mechanism for achieving reconfigurable thermal conductivities, largely hindering design flexibility and functional diversity. Inspired by the principles of click chemistry, known for its modular and efficient approach to creating molecular diversity, here we propose a universal concept of click metamaterials for fast realizing various thermal conductivities and functionalities. Tunable hollow-filled unit cells are constructed as the modified building blocks to change the thermal conductivity locally. Different configurations of unit cells with variable fill fractions can generate convertible thermal conductivities from isotropy to anisotropy, allowing click metamaterials to exhibit environment-free and reconfigurable thermal functionalities. The straightforward structures enable full-parameter regulation and simplify engineering preparation, making click metamaterials a promising candidate for practical use in other diffusion and wave systems.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"17 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102431","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In material science, the development of metamaterials is crucial for advancing various technological applications. However, most metamaterial designs are still case by case due to lacking a fundamental mechanism for achieving reconfigurable thermal conductivities, largely hindering design flexibility and functional diversity. Inspired by the principles of click chemistry, known for its modular and efficient approach to creating molecular diversity, here we propose a universal concept of click metamaterials for fast realizing various thermal conductivities and functionalities. Tunable hollow-filled unit cells are constructed as the modified building blocks to change the thermal conductivity locally. Different configurations of unit cells with variable fill fractions can generate convertible thermal conductivities from isotropy to anisotropy, allowing click metamaterials to exhibit environment-free and reconfigurable thermal functionalities. The straightforward structures enable full-parameter regulation and simplify engineering preparation, making click metamaterials a promising candidate for practical use in other diffusion and wave systems.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.