{"title":"Mathematical modeling and stability of SARS-CoV-2 transmission dynamics among domestic tourists in Thailand","authors":"Rattiya Sungchasit, Puntani Pongsumpun","doi":"10.1007/s12190-024-02228-8","DOIUrl":null,"url":null,"abstract":"<p>The defined epidemiological model system explaining the spread of infectious diseases characterized with SARS-CoV-2 is analysed. The resulting SEIQR model is analysed in a closed system. It considers the basic reproductive value, the equilibrium point, local subclinical stability of the disease-free equilibrium point and local subclinical stability of the endemic equilibrium point. This is examined and the asymptotic dynamics of the appropriate model system are investigated. Further, a sensitivity analysis supplemented by simulations is prepared in advance to impose how changes in parameters involve the dynamic behaviours of the model.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02228-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The defined epidemiological model system explaining the spread of infectious diseases characterized with SARS-CoV-2 is analysed. The resulting SEIQR model is analysed in a closed system. It considers the basic reproductive value, the equilibrium point, local subclinical stability of the disease-free equilibrium point and local subclinical stability of the endemic equilibrium point. This is examined and the asymptotic dynamics of the appropriate model system are investigated. Further, a sensitivity analysis supplemented by simulations is prepared in advance to impose how changes in parameters involve the dynamic behaviours of the model.