Edge resolvability of generalized honeycomb rhombic torus

IF 2.4 3区 数学 Q1 MATHEMATICS
Ayesha Andalib Kiran, Hani Shaker, Suhadi Wido Saputro
{"title":"Edge resolvability of generalized honeycomb rhombic torus","authors":"Ayesha Andalib Kiran, Hani Shaker, Suhadi Wido Saputro","doi":"10.1007/s12190-024-02231-z","DOIUrl":null,"url":null,"abstract":"<p>Minimum resolving sets (edge or vertex) have become integral to computer science, molecular topology, and combinatorial chemistry. Resolving sets for a specific network provide crucial information required for uniquely identifying each item in the network. The metric(respectively edge metric) dimension of a graph is the smallest number of the nodes needed to determine all other nodes (resp. edges) based on shortest path distances uniquely. Metric and edge metric dimensions as graph invariants have numerous applications, including robot navigation, pharmaceutical chemistry, canonically labeling graphs, and embedding symbolic data in low-dimensional Euclidean spaces. A honeycomb torus network can be obtained by joining pairs of nodes of degree two of the honeycomb mesh. Honeycomb torus has recently gained recognition as an attractive alternative to existing torus interconnection networks in parallel and distributed applications. In this article, we will discuss the Honeycomb Rhombic torus graph on the basis of edge metric dimension.</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"29 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02231-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Minimum resolving sets (edge or vertex) have become integral to computer science, molecular topology, and combinatorial chemistry. Resolving sets for a specific network provide crucial information required for uniquely identifying each item in the network. The metric(respectively edge metric) dimension of a graph is the smallest number of the nodes needed to determine all other nodes (resp. edges) based on shortest path distances uniquely. Metric and edge metric dimensions as graph invariants have numerous applications, including robot navigation, pharmaceutical chemistry, canonically labeling graphs, and embedding symbolic data in low-dimensional Euclidean spaces. A honeycomb torus network can be obtained by joining pairs of nodes of degree two of the honeycomb mesh. Honeycomb torus has recently gained recognition as an attractive alternative to existing torus interconnection networks in parallel and distributed applications. In this article, we will discuss the Honeycomb Rhombic torus graph on the basis of edge metric dimension.

Abstract Image

广义蜂巢菱形环的边缘可解性
最小解析集(边或顶点)已成为计算机科学、分子拓扑学和组合化学不可或缺的一部分。特定网络的解析集提供了唯一识别网络中每个项目所需的关键信息。图的度量(分别是边度量)维度是根据最短路径距离唯一确定所有其他节点(分别是边)所需的最小节点数。作为图不变式的度量维度和边度量维度有很多应用,包括机器人导航、药物化学、图的规范标注以及在低维欧几里得空间中嵌入符号数据。蜂巢环网络可以通过连接蜂巢网格中两度节点对来获得。在并行和分布式应用中,蜂巢环网作为现有环网互连网络的一种极具吸引力的替代品,最近得到了广泛认可。本文将在边缘度量维度的基础上讨论蜂巢菱形环图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics and Computing
Journal of Applied Mathematics and Computing Mathematics-Computational Mathematics
CiteScore
4.20
自引率
4.50%
发文量
131
期刊介绍: JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信