Lu Tian, Rui Zhang, Yong Wang, Bingchuan Xie, Haixuan Li and Yueyan Ren
{"title":"Multi-polarized four-mode wideband vortex electromagnetic beams generation through reflective metasurface in Ka-band","authors":"Lu Tian, Rui Zhang, Yong Wang, Bingchuan Xie, Haixuan Li and Yueyan Ren","doi":"10.1088/1402-4896/ad7649","DOIUrl":null,"url":null,"abstract":"Orbital angular momentum (OAM) is a new dimension for improving channel capacity and has been widely studied by scientists. In recent years, there has been an increasing amount of research on antennas and electromagnetic (EM) beams containing OAM, demonstrating its excellent ability in communication. This article proposes a Ka-band multi-mode orbital angular momentum reflectarray antenna (RA) capable of generating four vortex EM beams with four modes (l = −1, 0, +1, +2). The proposed unit cell can cover a 360-degree reflection phase range with a magnitude above 0.88, achieved through a combination of variable-sized and delay-line units. Furthermore, the unit cell’s mirror configuration allows for cross-polarization rejection. Based on these unit cells, a square reflectarray antenna (25 × 25 elements) is designed, fabricated, and measured. The measured results demonstrate that the 1 dB bandwidths for four modes are 25.81% (27–35 GHz, l = −1), 31.25% (27–37 GHz, l = 0), 28.57% (27–36 GHz, l = +1), and 20.69% (26–32 GHz, l = +2), respectively. Notably, the 3 dB gain bandwidths of all modes exceed 40%, with the maximum 3 dB bandwidth reaching 47.62% at mode l = +1. Furthermore, all vortex EM beams of this proposed RA maintain mode purities exceeding 70% within 3 dB bandwidths.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"39 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad7649","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Orbital angular momentum (OAM) is a new dimension for improving channel capacity and has been widely studied by scientists. In recent years, there has been an increasing amount of research on antennas and electromagnetic (EM) beams containing OAM, demonstrating its excellent ability in communication. This article proposes a Ka-band multi-mode orbital angular momentum reflectarray antenna (RA) capable of generating four vortex EM beams with four modes (l = −1, 0, +1, +2). The proposed unit cell can cover a 360-degree reflection phase range with a magnitude above 0.88, achieved through a combination of variable-sized and delay-line units. Furthermore, the unit cell’s mirror configuration allows for cross-polarization rejection. Based on these unit cells, a square reflectarray antenna (25 × 25 elements) is designed, fabricated, and measured. The measured results demonstrate that the 1 dB bandwidths for four modes are 25.81% (27–35 GHz, l = −1), 31.25% (27–37 GHz, l = 0), 28.57% (27–36 GHz, l = +1), and 20.69% (26–32 GHz, l = +2), respectively. Notably, the 3 dB gain bandwidths of all modes exceed 40%, with the maximum 3 dB bandwidth reaching 47.62% at mode l = +1. Furthermore, all vortex EM beams of this proposed RA maintain mode purities exceeding 70% within 3 dB bandwidths.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.