MXene-based semi-circle with a thin wire-shaped resonator wideband polarization-insensitive solar absorber

IF 2.6 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Khaled Aliqab, Raj Agravat, Shobhit K Patel, Naim Ben Ali, Meshari Alsharari and Ammar Armghan
{"title":"MXene-based semi-circle with a thin wire-shaped resonator wideband polarization-insensitive solar absorber","authors":"Khaled Aliqab, Raj Agravat, Shobhit K Patel, Naim Ben Ali, Meshari Alsharari and Ammar Armghan","doi":"10.1088/1402-4896/ad78c5","DOIUrl":null,"url":null,"abstract":"Fossil fuels’ supply peaks, decreases, and shortages are determined by their proven reserves, research, and consumption rates. With a large upfront cost, renewable and alternative energy sources are essential to solving the twin issues of energy and climate change. Solar absorbers are an excellent way to use renewable energy from the environment. This paper suggested an MXene-based semi-circle with a thin wire-shaped resonator (MSCWTWSR) solar absorber where the resonator layer consists of MXene material and Fe is used as substrate layer and the resonator has semi-circle and thin wire geometry which effectively absorbs the sun radiation with wideband. This proposed MSCWTWSR solar absorber works at 200–3000 (nm) wavelength and has more than 93% average absorption. The first band bandwidth of this MSCWTWSR solar absorber is 400 (nm), the second band is 530 (nm), and the third band is 470 (nm). This structure got more than 93% absorption in the AM 1.5 solar irradiation configuration. The structure gives in the Transverse electric (TE) field and Transverse magnetic (TM) field and the structure has polarization for insensitive. Furthermore, there is also investigated different incidence angles. A suggested article includes sections on testing for electric and magnetic intensities with a comparison table. The suggested solar absorber is employed in a distinct thermal heating application since MXene has a low thermal resistance and good thermal stability.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"4 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad78c5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fossil fuels’ supply peaks, decreases, and shortages are determined by their proven reserves, research, and consumption rates. With a large upfront cost, renewable and alternative energy sources are essential to solving the twin issues of energy and climate change. Solar absorbers are an excellent way to use renewable energy from the environment. This paper suggested an MXene-based semi-circle with a thin wire-shaped resonator (MSCWTWSR) solar absorber where the resonator layer consists of MXene material and Fe is used as substrate layer and the resonator has semi-circle and thin wire geometry which effectively absorbs the sun radiation with wideband. This proposed MSCWTWSR solar absorber works at 200–3000 (nm) wavelength and has more than 93% average absorption. The first band bandwidth of this MSCWTWSR solar absorber is 400 (nm), the second band is 530 (nm), and the third band is 470 (nm). This structure got more than 93% absorption in the AM 1.5 solar irradiation configuration. The structure gives in the Transverse electric (TE) field and Transverse magnetic (TM) field and the structure has polarization for insensitive. Furthermore, there is also investigated different incidence angles. A suggested article includes sections on testing for electric and magnetic intensities with a comparison table. The suggested solar absorber is employed in a distinct thermal heating application since MXene has a low thermal resistance and good thermal stability.
基于 MXene 的带细线形谐振器的半圆形宽带偏振不敏感太阳能吸收器
化石燃料的供应峰值、减少和短缺是由其探明储量、研究和消耗率决定的。可再生能源和替代能源的前期成本较高,对于解决能源和气候变化这两个问题至关重要。太阳能吸收器是利用环境中可再生能源的绝佳途径。本文提出了一种基于 MXene 的半圆形细线形谐振器(MSCWTWSR)太阳能吸收器,谐振器层由 MXene 材料组成,基底层为铁,谐振器具有半圆形和细线形的几何形状,可有效吸收宽带太阳辐射。这种 MSCWTWSR 太阳能吸收器的工作波长为 200-3000(纳米),平均吸收率超过 93%。这种 MSCWTWSR 太阳能吸收器的第一带宽为 400(纳米),第二带宽为 530(纳米),第三带宽为 470(纳米)。在 AM 1.5 太阳辐照配置下,该结构的吸收率超过 93%。该结构能在横向电场(TE)和横向磁场(TM)中产生吸收,而且对极化不敏感。此外,还研究了不同的入射角度。建议的文章包括测试电场和磁场强度的部分,并附有对照表。由于 MXene 具有低热阻和良好的热稳定性,建议的太阳能吸收器可用于独特的热加热应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica Scripta
Physica Scripta 物理-物理:综合
CiteScore
3.70
自引率
3.40%
发文量
782
审稿时长
4.5 months
期刊介绍: Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed: -Atomic, molecular and optical physics- Plasma physics- Condensed matter physics- Mathematical physics- Astrophysics- High energy physics- Nuclear physics- Nonlinear physics. The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信