The Ortholog Receptor Or67d in Drosophila Bipectinata is able to Detect Two Different Pheromones

IF 2.2 3区 环境科学与生态学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Melissa Díaz-Morales, Mohammed A. Khallaf, Regina Stieber, Ibrahim Alali, Bill S. Hansson, Markus Knaden
{"title":"The Ortholog Receptor Or67d in Drosophila Bipectinata is able to Detect Two Different Pheromones","authors":"Melissa Díaz-Morales, Mohammed A. Khallaf, Regina Stieber, Ibrahim Alali, Bill S. Hansson, Markus Knaden","doi":"10.1007/s10886-024-01545-3","DOIUrl":null,"url":null,"abstract":"<p>Sex pheromones play a crucial role in species recognition and reproductive isolation. Despite being largely species-specific in drosophilids, the mechanisms underlying pheromone detection, production, and their influence on mating behavior remain poorly understood. Here, we compare the chemical profiles of <i>Drosophila bipectinata</i> and <i>D. melanogaster</i>, the mating behaviors in both species, as well as the tuning properties of Or67d receptors, which are expressed by neurons in antennal trichoid sensilla at1. Through single sensillum recordings, we demonstrate that the <i>D. bipectinata</i> Or67d-ortholog exhibits similar sensitivity to <i>cis</i>-vaccenyl acetate (<i>c</i>VA) as compared to <i>D.</i> melanogaster but in addition also responds uniquely to (Z)-11-eicosen-1-yl-acetate (Z11-20:Ac), a compound exclusively produced by <i>D. bipectinata</i> males. Through courtship behavior assays we found that, surprisingly, perfuming the flies with Z11-20:Ac did not reveal any aphrodisiacal or anti-aphrodisiacal effects in mating assays. The behavioral relevance of at1 neuron channels in <i>D. bipectinata</i> compared to <i>D. melanogaster</i> seems to be restricted to its formerly shown function as an aggregation pheromone. Moreover, the non-specific compound cVA affected copulation negatively in <i>D. bipectinata</i> and could potentially act as a premating isolation barrier. As both ligands of Or67d seem to govern different behaviors in <i>D. bipectinata</i>, additional neurons detecting at least one of those compounds might be involved. These results underscore the complexity of chemical signaling in species recognition and raise intriguing questions about the evolutionary implications of pheromone detection pathways in <i>Drosophila</i> species.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-024-01545-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sex pheromones play a crucial role in species recognition and reproductive isolation. Despite being largely species-specific in drosophilids, the mechanisms underlying pheromone detection, production, and their influence on mating behavior remain poorly understood. Here, we compare the chemical profiles of Drosophila bipectinata and D. melanogaster, the mating behaviors in both species, as well as the tuning properties of Or67d receptors, which are expressed by neurons in antennal trichoid sensilla at1. Through single sensillum recordings, we demonstrate that the D. bipectinata Or67d-ortholog exhibits similar sensitivity to cis-vaccenyl acetate (cVA) as compared to D. melanogaster but in addition also responds uniquely to (Z)-11-eicosen-1-yl-acetate (Z11-20:Ac), a compound exclusively produced by D. bipectinata males. Through courtship behavior assays we found that, surprisingly, perfuming the flies with Z11-20:Ac did not reveal any aphrodisiacal or anti-aphrodisiacal effects in mating assays. The behavioral relevance of at1 neuron channels in D. bipectinata compared to D. melanogaster seems to be restricted to its formerly shown function as an aggregation pheromone. Moreover, the non-specific compound cVA affected copulation negatively in D. bipectinata and could potentially act as a premating isolation barrier. As both ligands of Or67d seem to govern different behaviors in D. bipectinata, additional neurons detecting at least one of those compounds might be involved. These results underscore the complexity of chemical signaling in species recognition and raise intriguing questions about the evolutionary implications of pheromone detection pathways in Drosophila species.

Abstract Image

双壳果蝇的同源受体 Or67d 能够检测两种不同的信息素
性信息素在物种识别和生殖隔离中起着至关重要的作用。尽管性信息素在果蝇中具有物种特异性,但人们对其检测、产生和影响交配行为的机制仍然知之甚少。在这里,我们比较了双栉果蝇和黑腹果蝇的化学特征、两种果蝇的交配行为以及Or67d受体的调谐特性。通过单感受器记录,我们证明双栉水母 Or67d-ortholog对顺式乙酸长春花酯(cVA)的敏感性与黑腹蝇鼠相似,但对(Z)-11-二十烯-1-基乙酸酯(Z11-20:Ac)也有独特的反应,这是一种双栉水母雄性独有的化合物。通过求偶行为试验,我们发现,令人惊讶的是,在交配试验中,用 Z11-20:Ac 给苍蝇加香并没有显示出任何催情或反催情作用。与黑腹角蝇相比,at1神经元通道在双栉孔蝇中的行为相关性似乎仅限于它以前作为聚集信息素的功能。此外,非特异性化合物 cVA 对双栉水母的交配有负面影响,有可能成为交配前的隔离屏障。由于 Or67d 的两种配体似乎都能控制双栉水母的不同行为,因此可能还有其他神经元至少能检测到其中一种化合物。这些结果凸显了化学信号在物种识别中的复杂性,并提出了有关信息素检测途径在果蝇物种中的进化意义的有趣问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Ecology
Journal of Chemical Ecology 环境科学-生化与分子生物学
CiteScore
5.10
自引率
4.30%
发文量
58
审稿时长
4 months
期刊介绍: Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature. Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信