Phase equilibria in the system BaO–TiO2

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Tasmia Zaman, Yue Jiang, Sajjad Seifi Mofarah, Saroj Kumar Bhattacharyya, Pramod Koshy, John E. Daniels, Charles Christopher Sorrell
{"title":"Phase equilibria in the system BaO–TiO2","authors":"Tasmia Zaman,&nbsp;Yue Jiang,&nbsp;Sajjad Seifi Mofarah,&nbsp;Saroj Kumar Bhattacharyya,&nbsp;Pramod Koshy,&nbsp;John E. Daniels,&nbsp;Charles Christopher Sorrell","doi":"10.1111/jace.20143","DOIUrl":null,"url":null,"abstract":"<p>The system BaO–TiO<sub>2</sub> is technically important because it contains multiple dielectric and ferroelectric phases, including the important BaTiO<sub>3</sub>, which is one of the most widely studied dielectric perovskites owing to its dual piezoelectric and ferroelectric properties. The present work revises the subsolidus phase equilibria data by synthesizing previous phase equilibria data and new experimental results using high-temperature (600°–1300°C) and long-term (≤336 h) equilibration, coupled with analytical work based principally on room-temperature X-ray diffraction. The resultant phase diagram is given in both mole and weight percents, extending from the liquidus surface (not investigated) to absolute zero temperature (for inclusion of the previously excluded crystallographic and ferroelectric phase transformations). The major features include (1) correction of four eutectoid and three peritectoid reactions and corresponding temperatures, (2) indication of inferred partial solid solubilities, (3) clarification of the BaTiO<sub>3</sub> solid solubility homogeneity regions, and (4) specification of some invariant point compositions on the liquidus surface.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20143","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20143","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The system BaO–TiO2 is technically important because it contains multiple dielectric and ferroelectric phases, including the important BaTiO3, which is one of the most widely studied dielectric perovskites owing to its dual piezoelectric and ferroelectric properties. The present work revises the subsolidus phase equilibria data by synthesizing previous phase equilibria data and new experimental results using high-temperature (600°–1300°C) and long-term (≤336 h) equilibration, coupled with analytical work based principally on room-temperature X-ray diffraction. The resultant phase diagram is given in both mole and weight percents, extending from the liquidus surface (not investigated) to absolute zero temperature (for inclusion of the previously excluded crystallographic and ferroelectric phase transformations). The major features include (1) correction of four eutectoid and three peritectoid reactions and corresponding temperatures, (2) indication of inferred partial solid solubilities, (3) clarification of the BaTiO3 solid solubility homogeneity regions, and (4) specification of some invariant point compositions on the liquidus surface.

Abstract Image

BaO-TiO2 体系中的相平衡
BaO-TiO2 体系具有重要的技术意义,因为它包含多种介电相和铁电相,其中包括重要的 BaTiO3,由于具有压电和铁电双重特性,BaTiO3 是研究最广泛的介电包晶石之一。本研究综合了以前的相平衡数据和新的实验结果,利用高温(600°-1300°C)和长期(≤336 小时)平衡,以及主要基于室温 X 射线衍射的分析工作,修订了亚固相平衡数据。由此得出的相图以摩尔和重量百分数表示,从液面(未调查)一直延伸到绝对零度(包括之前排除的结晶相变和铁电相变)。主要特点包括:(1) 修正了四个共晶反应和三个包晶反应以及相应的温度;(2) 显示了推断出的部分固溶度;(3) 明确了 BaTiO3 固溶度均匀性区域;(4) 指明了液相表面上的一些不变点成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信