Rational circle-equivariant elliptic cohomology of CP(V)

Pub Date : 2024-09-18 DOI:10.4310/hha.2024.v26.n2.a3
Matteo Barucco
{"title":"Rational circle-equivariant elliptic cohomology of CP(V)","authors":"Matteo Barucco","doi":"10.4310/hha.2024.v26.n2.a3","DOIUrl":null,"url":null,"abstract":"$\\def\\T{\\mathbb{T}}\\def\\CPV{\\mathbb{C}P(V)}$ We prove a splitting result between the algebraic models for rational $\\T^2$- and $\\T$-equivariant elliptic cohomology, where $\\T$ is the circle group and $\\T^2$ is the $2$-torus. As an application we compute rational $\\T$-equivariant elliptic cohomology of $\\CPV$: the $\\T$-space of complex lines for a finite dimensional complex $\\T$-representation $V$. This is achieved by reducing the computation of $\\T$-elliptic cohomology of $\\CPV$ to the computation of $\\T^2$-elliptic cohomology of certain spheres of complex representations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n2.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

$\def\T{\mathbb{T}}\def\CPV{\mathbb{C}P(V)}$ We prove a splitting result between the algebraic models for rational $\T^2$- and $\T$-equivariant elliptic cohomology, where $\T$ is the circle group and $\T^2$ is the $2$-torus. As an application we compute rational $\T$-equivariant elliptic cohomology of $\CPV$: the $\T$-space of complex lines for a finite dimensional complex $\T$-representation $V$. This is achieved by reducing the computation of $\T$-elliptic cohomology of $\CPV$ to the computation of $\T^2$-elliptic cohomology of certain spheres of complex representations.
分享
查看原文
CP(V) 的有理圆变椭圆同调
$def\T\{mathbb{T}}\def\CPV{\mathbb{C}P(V)}$ 我们证明了理性 $\T^2$- 和 $\T$-equivariant elliptic cohomology 的代数模型之间的分裂结果,其中 $\T$ 是圆组,$\T^2$ 是 2$-torus。作为应用,我们计算了$\CPV$的有理$\T$-后向椭圆同调:有限维复数$\T$-表示$V$的复线的$\T$-空间。这是通过将 $\CPV$ 的 $\T$-elliptic cohomology 计算简化为计算复数表示的某些球的 $\T^2$-elliptic cohomology 来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信