On étale hypercohomology of henselian regular local rings with values in $p$-adic étale Tate twists

IF 0.8 4区 数学 Q2 MATHEMATICS
Makoto Sakagaito
{"title":"On étale hypercohomology of henselian regular local rings with values in $p$-adic étale Tate twists","authors":"Makoto Sakagaito","doi":"10.4310/hha.2024.v26.n2.a2","DOIUrl":null,"url":null,"abstract":"Let $R$ be the henselization of a local ring of a semistable family over the spectrum of a discrete valuation ring of mixed characteristic $(0, p)$ and $k$ the residue field of $R$. In this paper, we prove an isomorphism of étale hypercohomology groups $H^{n+1}_{\\textrm{ét}} (R, \\mathfrak{T}_r (n)) \\simeq H^{1}_{\\textrm{ét}} (k, W_r \\Omega^n_{\\log})$ for any integers $n \\geqslant 0$ and $r \\gt 0$ where $\\mathfrak{T}_r (n)$ is the p-adic Tate twist and $W_r \\Omega^n_{\\log}$ is the logarithmic Hodge–Witt sheaf. As an application, we prove the local-global principle for Galois cohomology groups over function fields of curves over an excellent henselian discrete valuation ring of mixed characteristic.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":"22 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n2.a2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be the henselization of a local ring of a semistable family over the spectrum of a discrete valuation ring of mixed characteristic $(0, p)$ and $k$ the residue field of $R$. In this paper, we prove an isomorphism of étale hypercohomology groups $H^{n+1}_{\textrm{ét}} (R, \mathfrak{T}_r (n)) \simeq H^{1}_{\textrm{ét}} (k, W_r \Omega^n_{\log})$ for any integers $n \geqslant 0$ and $r \gt 0$ where $\mathfrak{T}_r (n)$ is the p-adic Tate twist and $W_r \Omega^n_{\log}$ is the logarithmic Hodge–Witt sheaf. As an application, we prove the local-global principle for Galois cohomology groups over function fields of curves over an excellent henselian discrete valuation ring of mixed characteristic.
论在 $p$-adic étale 塔特捻中有值的恒等正则局部环的 étale 超同调
假设 $R$ 是混合特征 $(0, p)$的离散估值环谱上的半稳态族的局部环的埘,而 $k$ 是 $R$ 的残差域。在本文中,我们证明了 étale 超同调群 $H^{n+1}_{textrm{ét}} 的同构性。(R, \mathfrak{T}_r (n))\simeq H^{1}_{textrm{ét}}(k, W_r \Omega^n_{\log})$ 对于任意整数 $n \geqslant 0$ 和 $r \gt 0$,其中 $\mathfrak{T}_r (n)$ 是 p-adic Tate 扭转,$W_r \Omega^n_\{log}$ 是对数霍奇-维特剪切。作为应用,我们证明了混合特征的优秀亨氏离散估值环上曲线函数场的伽罗瓦同调群的局部-全局原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信