Homotopy characters as a homotopy limit

Pub Date : 2024-09-18 DOI:10.4310/hha.2024.v26.n2.a1
Sergey Arkhipov, Daria Poliakova
{"title":"Homotopy characters as a homotopy limit","authors":"Sergey Arkhipov, Daria Poliakova","doi":"10.4310/hha.2024.v26.n2.a1","DOIUrl":null,"url":null,"abstract":"For a Hopf DG‑algebra corresponding to a derived algebraic group, we compute the homotopy limit of the associated cosimplicial system of DG‑algebras given by the classifying space construction. The homotopy limit is taken in the model category of DG‑categories. The objects of the resulting DG‑category are Maurer–Cartan elements of $\\operatorname{Cobar}(A)$, or 1‑dimensional $A_\\infty$-comodules over $A$. These can be viewed as characters up to homotopy of the corresponding derived group. Their tensor product is interpreted in terms of Kadeishvili’s multibraces. We also study the coderived category of DG‑modules over this DG‑category.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a Hopf DG‑algebra corresponding to a derived algebraic group, we compute the homotopy limit of the associated cosimplicial system of DG‑algebras given by the classifying space construction. The homotopy limit is taken in the model category of DG‑categories. The objects of the resulting DG‑category are Maurer–Cartan elements of $\operatorname{Cobar}(A)$, or 1‑dimensional $A_\infty$-comodules over $A$. These can be viewed as characters up to homotopy of the corresponding derived group. Their tensor product is interpreted in terms of Kadeishvili’s multibraces. We also study the coderived category of DG‑modules over this DG‑category.
分享
查看原文
作为同调极限的同调字符
对于与派生代数群相对应的霍普夫 DG-代数,我们计算分类空间构造给出的相关 DG-代数共简系统的同调极限。同调极限是在 DG 范畴的模型范畴中进行的。由此得到的 DG 范畴的对象是 $\operatorname{Cobar}(A)$ 的毛勒-卡尔坦元素,或者是 $A$ 上的一维 $A_\infty$ 小模子。这些元素可以看作是相应派生类的同调符。它们的张量乘积可以用卡德什维利多臂来解释。我们还研究了这个 DG 范畴上的 DG 模块的编码范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信