{"title":"Homotopy characters as a homotopy limit","authors":"Sergey Arkhipov, Daria Poliakova","doi":"10.4310/hha.2024.v26.n2.a1","DOIUrl":null,"url":null,"abstract":"For a Hopf DG‑algebra corresponding to a derived algebraic group, we compute the homotopy limit of the associated cosimplicial system of DG‑algebras given by the classifying space construction. The homotopy limit is taken in the model category of DG‑categories. The objects of the resulting DG‑category are Maurer–Cartan elements of $\\operatorname{Cobar}(A)$, or 1‑dimensional $A_\\infty$-comodules over $A$. These can be viewed as characters up to homotopy of the corresponding derived group. Their tensor product is interpreted in terms of Kadeishvili’s multibraces. We also study the coderived category of DG‑modules over this DG‑category.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":"77 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/hha.2024.v26.n2.a1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a Hopf DG‑algebra corresponding to a derived algebraic group, we compute the homotopy limit of the associated cosimplicial system of DG‑algebras given by the classifying space construction. The homotopy limit is taken in the model category of DG‑categories. The objects of the resulting DG‑category are Maurer–Cartan elements of $\operatorname{Cobar}(A)$, or 1‑dimensional $A_\infty$-comodules over $A$. These can be viewed as characters up to homotopy of the corresponding derived group. Their tensor product is interpreted in terms of Kadeishvili’s multibraces. We also study the coderived category of DG‑modules over this DG‑category.
期刊介绍:
Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.